-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathTest_FullCon.py
208 lines (185 loc) · 8.35 KB
/
Test_FullCon.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
from torch.autograd import Variable
from torch.utils import data
from torch.utils.tensorboard import SummaryWriter
import matplotlib.pyplot as plt
import numpy as np
import os
import shutil
import cv2
import sys
# train function
def train(module, train_data, optimizer_function, epoch_num):
for batch_idx, (t_data, target) in enumerate(train_data):
# data -> binary
t_data = t_data.view(t_data.size(0), -1)
t_data_binary = np.ceil(t_data.numpy())
t_data = torch.from_numpy(t_data_binary)
t_data, target = Variable(t_data).to(device), Variable(target).to(device)
optimizer_function.zero_grad()
output = module(t_data)
loss = Loss_function(output, target)
loss.backward()
optimizer_function.step()
if batch_idx % 300 == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch_num, batch_idx * len(t_data), len(train_data.dataset),
100. * batch_idx / len(train_data), loss.item()))
# test function
def test(model, test_data, epoch_num, writer):
correct = 0
with torch.no_grad():
for t_data, target in test_data:
t_data = t_data.view(t_data.size(0), -1)
t_data_binary = np.ceil(t_data.numpy())
t_data = torch.from_numpy(t_data_binary)
t_data, target = Variable(t_data), Variable(target)
output = model(t_data)
pred = output.max(1, keepdim=True)[1]
correct += pred.eq(target.view_as(pred)).sum().item()
print("\nTest set: Epoch:{} Accuracy: {}/{} ({:.2f}%) \n".format(epoch_num, correct, len(test_data.dataset),
100. * correct / len(test_data.dataset)))
# record data in tensorboard log
writer.add_scalar('Accuracy', 100. * correct / len(test_data.dataset), epoch_num)
# Network structure
class Net(nn.Module):
def __init__(self, n_feature, n_hidden1, n_hidden2, n_output):
super(Net, self).__init__()
self.hidden1 = nn.Linear(n_feature, n_hidden1, bias=False)
self.hidden2 = nn.Linear(n_hidden1, n_hidden2, bias=False)
self.out = nn.Linear(n_hidden2, n_output, bias=False)
# connect inputs and outputs
def forward(self, x):
x = torch.tanh(self.hidden1(x))
x = torch.tanh(self.hidden2(x))
x = torch.tanh(self.out(x))
return x
# hyper parameters
size_inputs = 16*16
size_hidden1 = 32
size_hidden2 = 32
size_outputs = 10
learning_rate = 0.01
BATCH_SIZE = 1
EPOCHS = 100
if __name__ == '__main__':
# data precoding
train_transformer = transforms.Compose([
transforms.Resize(16), # down sampling
transforms.ToTensor()
])
# data loading
train_loader = data.DataLoader(
datasets.MNIST('data', train=True, download=True, transform=train_transformer),
batch_size=BATCH_SIZE, shuffle=True)
test_loader = data.DataLoader(
datasets.MNIST('data', train=False, download=True, transform=train_transformer),
batch_size=BATCH_SIZE, shuffle=True)
# compare images (28x28 vs 16x16)
raw_train_data = data.DataLoader(
datasets.MNIST('data', train=True, download=True, transform=transforms.ToTensor()),
batch_size=BATCH_SIZE, shuffle=False)
transform_train_data = data.DataLoader(
datasets.MNIST('data', train=True, download=True, transform=train_transformer),
batch_size=BATCH_SIZE, shuffle=False)
# check for data
show_fig = False
if show_fig:
for batch_idx, (t_data, target) in enumerate(raw_train_data):
t_data = t_data.view(28, 28)
t_data_binary = np.ceil(t_data.numpy())
t_data_binary = torch.from_numpy(t_data_binary)
# print(t_data)
if batch_idx < 3:
plt.figure(f'raw data {batch_idx}')
plt.imshow(t_data)
target_number_list = []
for batch_idx, (t_data, target) in enumerate(transform_train_data):
print(t_data)
t_data = t_data.view(16, 16)
target_number_list.append(target)
# save data as a .txt file for zehan's test
if not os.path.exists('data_figures'):
os.mkdir('data_figures')
t_data_1 = t_data.numpy()
np.savetxt(f'data_figures/fig{batch_idx}.txt', t_data_1)
# print(t_data_1)
t_data_binary = np.ceil(t_data.numpy())
t_data_binary = torch.from_numpy(t_data_binary)
if batch_idx < 3:
plt.figure(f'transformed data {batch_idx}')
plt.imshow(t_data)
plt.figure(f'data_binary {batch_idx}')
plt.imshow(t_data_binary)
print(t_data_binary)
plt.show()
np.savetxt('value_list.txt', np.array(target_number_list))
sys.exit(-1)
# cuda acceleration
device = "cuda" if torch.cuda.is_available() else "cpu"
device = 'cpu' # in MNIST recognition 'GPu' is slower than 'cpu'
print(f"Using {device} device")
# create a network sample
net = Net(n_feature=size_inputs, n_hidden1=size_hidden1, n_hidden2=size_hidden2, n_output=size_outputs).to(device)
print(net.state_dict().keys())
# record the weight datas as .npy form
hid1_max_list, hid1_min_list = [], []
hid2_max_list, hid2_min_list = [], []
out_max_list, out_min_list = [], []
nn.init.normal_(net.state_dict()['hidden1.weight'], mean=0, std=0.1)
nn.init.normal_(net.state_dict()['hidden2.weight'], mean=0, std=0.1)
nn.init.normal_(net.state_dict()['out.weight'], mean=0, std=0.1)
hidden1_weight = net.state_dict()['hidden1.weight'].numpy()
hidden2_weight = net.state_dict()['hidden2.weight'].numpy()
out_weight = net.state_dict()['out.weight'].numpy()
print(f'hidden1 max: {np.max(hidden1_weight)} min: {np.min(hidden1_weight)}')
print(f'hidden2 max: {np.max(hidden2_weight)} min: {np.min(hidden2_weight)}')
print(f'out_weight max: {np.max(out_weight)} min: {np.min(out_weight)}')
hid1_max_list.append(np.max(hidden1_weight))
hid1_min_list.append(np.min(hidden1_weight))
hid2_max_list.append(np.max(hidden2_weight))
hid2_min_list.append(np.min(hidden2_weight))
out_max_list.append(np.max(out_weight))
out_min_list.append(np.min(out_weight))
# loss function and optimizer
Loss_function = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=learning_rate)
# tensorboard
tensorlog_path = 'FullConnect_Mnist'
if os.path.exists(tensorlog_path):
shutil.rmtree(tensorlog_path)
writer = SummaryWriter(tensorlog_path)
for epoch in range(1, EPOCHS + 1):
train(module=net, train_data=train_loader, optimizer_function=optimizer, epoch_num=epoch)
test(model=net, test_data=test_loader, epoch_num=epoch, writer=writer)
print(net.state_dict().keys())
hidden1_weight = net.state_dict()['hidden1.weight'].numpy()
hidden2_weight = net.state_dict()['hidden2.weight'].numpy()
out_weight = net.state_dict()['out.weight'].numpy()
data_save_path = 'weight_data'
if not os.path.exists(data_save_path):
os.makedirs(data_save_path)
# save data
torch.save(net, f'{data_save_path}/epoch_{epoch}')
# np.save(f'{data_save_path}\\hidden1', hidden1_weight)
# np.save(f'{data_save_path}\\hidden2', hidden2_weight)
# np.save(f'{data_save_path}\\out_weight', out_weight)
# print(f'hidden1 max: {np.max(hidden1_weight)} min: {np.min(hidden1_weight)}')
# print(f'hidden2 max: {np.max(hidden2_weight)} min: {np.min(hidden2_weight)}')
# print(f'out_weight max: {np.max(out_weight)} min: {np.min(out_weight)}')
# save data
hid1_max_list.append(np.max(hidden1_weight))
hid1_min_list.append(np.min(hidden1_weight))
hid2_max_list.append(np.max(hidden2_weight))
hid2_min_list.append(np.min(hidden2_weight))
out_max_list.append(np.max(out_weight))
out_min_list.append(np.min(out_weight))
np.save('hid1_min_list', hid1_min_list)
np.save('hid2_min_list', hid2_min_list)
np.save('out_min_list', out_min_list)
np.save('hid1_max_list', hid1_max_list)
np.save('hid2_max_list', hid2_max_list)
np.save('out_max_list', out_max_list)