@@ -219,21 +219,21 @@ def restrictDvd (hpq : p ∣ q) : q.Gal →* p.Gal :=
219219 if hq : q = 0 then 1
220220 else
221221 @restrict F _ p _ _ _
222- ⟨(SplittingField.splits q).splits_of_dvd (map_ne_zero hq) ((map_dvd_map' _).mpr hpq)⟩
222+ ⟨(SplittingField.splits q).of_dvd (map_ne_zero hq) ((map_dvd_map' _).mpr hpq)⟩
223223
224224theorem restrictDvd_def [Decidable (q = 0 )] (hpq : p ∣ q) :
225225 restrictDvd hpq =
226226 if hq : q = 0 then 1
227227 else @restrict F _ p _ _ _
228- ⟨(SplittingField.splits q).splits_of_dvd (map_ne_zero hq) ((map_dvd_map' _).mpr hpq)⟩ := by
228+ ⟨(SplittingField.splits q).of_dvd (map_ne_zero hq) ((map_dvd_map' _).mpr hpq)⟩ := by
229229 unfold restrictDvd
230230 congr
231231
232232theorem restrictDvd_surjective (hpq : p ∣ q) (hq : q ≠ 0 ) :
233233 Function.Surjective (restrictDvd hpq) := by
234234 classical
235235 haveI := Fact.mk <|
236- (SplittingField.splits q).splits_of_dvd (map_ne_zero hq) ((map_dvd_map' _).mpr hpq)
236+ (SplittingField.splits q).of_dvd (map_ne_zero hq) ((map_dvd_map' _).mpr hpq)
237237 simpa only [restrictDvd_def, dif_neg hq] using restrict_surjective _ _
238238
239239variable (p q)
@@ -255,7 +255,7 @@ theorem restrictProd_injective : Function.Injective (restrictProd p q) := by
255255 rw [rootSet_def, aroots_mul hpq] at hx
256256 rcases Multiset.mem_add.mp (Multiset.mem_toFinset.mp hx) with h | h
257257 · haveI : Fact ((p.map (algebraMap F (p * q).SplittingField)).Splits) :=
258- ⟨(SplittingField.splits (p * q)).splits_of_dvd (map_ne_zero hpq)
258+ ⟨(SplittingField.splits (p * q)).of_dvd (map_ne_zero hpq)
259259 ((map_dvd_map' _).mpr (dvd_mul_right p q))⟩
260260 have key :
261261 x =
@@ -266,7 +266,7 @@ theorem restrictProd_injective : Function.Injective (restrictProd p q) := by
266266 rw [key, ← AlgEquiv.restrictNormal_commutes, ← AlgEquiv.restrictNormal_commutes]
267267 exact congr_arg _ (AlgEquiv.ext_iff.mp hfg.1 _)
268268 · haveI : Fact ((q.map (algebraMap F (p * q).SplittingField)).Splits) :=
269- ⟨(SplittingField.splits (p * q)).splits_of_dvd (map_ne_zero hpq)
269+ ⟨(SplittingField.splits (p * q)).of_dvd (map_ne_zero hpq)
270270 ((map_dvd_map' _).mpr (dvd_mul_left q p))⟩
271271 have key :
272272 x =
@@ -285,12 +285,12 @@ theorem mul_splits_in_splittingField_of_mul {p₁ q₁ p₂ q₂ : F[X]} (hq₁
285285 apply Splits.mul
286286 · rw [←
287287 (SplittingField.lift q₁
288- ((SplittingField.splits _).splits_of_dvd (map_ne_zero (mul_ne_zero hq₁ hq₂))
288+ ((SplittingField.splits _).of_dvd (map_ne_zero (mul_ne_zero hq₁ hq₂))
289289 ((map_dvd_map' _).mpr (dvd_mul_right q₁ q₂)))).comp_algebraMap, ← map_map]
290290 exact h₁.map _
291291 · rw [←
292292 (SplittingField.lift q₂
293- ((SplittingField.splits _).splits_of_dvd (map_ne_zero (mul_ne_zero hq₁ hq₂))
293+ ((SplittingField.splits _).of_dvd (map_ne_zero (mul_ne_zero hq₁ hq₂))
294294 ((map_dvd_map' _).mpr (dvd_mul_left q₂ q₁)))).comp_algebraMap, ← map_map]
295295 exact h₂.map _
296296
@@ -309,7 +309,7 @@ theorem splits_in_splittingField_of_comp (hq : q.natDegree ≠ 0) :
309309 rw [eval_map_algebraMap, aeval_comp] at hx
310310 have h_normal : Normal F (r.comp q).SplittingField := SplittingField.instNormal (r.comp q)
311311 have qx_int := Normal.isIntegral h_normal (aeval x q)
312- exact (h_normal.splits _).splits_of_dvd (map_ne_zero (minpoly.ne_zero (h_normal.isIntegral _)))
312+ exact (h_normal.splits _).of_dvd (map_ne_zero (minpoly.ne_zero (h_normal.isIntegral _)))
313313 ((map_dvd_map' _).mpr ((minpoly.irreducible qx_int).dvd_symm hr (minpoly.dvd F _ hx)))
314314 have key2 : ∀ {p₁ p₂ : F[X]}, P p₁ → P p₂ → P (p₁ * p₂) := by
315315 intro p₁ p₂ hp₁ hp₂
0 commit comments