Skip to content

Commit 35e5c59

Browse files
committed
remove unused argument
1 parent 39dacb0 commit 35e5c59

File tree

1 file changed

+2
-5
lines changed

1 file changed

+2
-5
lines changed

Mathlib/NumberTheory/MahlerMeasure.lean

Lines changed: 2 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -40,7 +40,7 @@ local notation3 "BoxPoly" =>
4040
{p : ℤ[X] | p.natDegree < n + 1 ∧ ∀ i, B₁ i ≤ p.coeff i ∧ p.coeff i ≤ B₂ i}
4141

4242
open Finset in
43-
theorem card_eq_of_natDegree_le_of_coeff_le (h_B : ∀ i, ⌈B₁ i⌉ ≤ ⌊B₂ i⌋) :
43+
theorem card_eq_of_natDegree_le_of_coeff_le :
4444
Set.ncard BoxPoly = ∏ i, (⌊B₂ i⌋ - ⌈B₁ i⌉ + 1).toNat := by
4545
let e : BoxPoly ≃ Icc (⌈B₁ ·⌉) (⌊B₂ ·⌋) := {
4646
toFun p := ⟨toFn (n + 1) p, by
@@ -67,11 +67,8 @@ private lemma card_mahlerMeasure (n : ℕ) (B : ℝ≥0) :
6767
have h_card :
6868
Set.ncard {p : ℤ[X] | p.natDegree < n + 1 ∧ ∀ i : Fin (n + 1), ‖p.coeff i‖ ≤ n.choose i * B} =
6969
∏ i : Fin (n + 1), (2 * ⌊n.choose i * B⌋₊ + 1) := by
70-
have h_B (i : Fin (n + 1)) : ⌈-(n.choose i * B : ℝ)⌉ ≤ ⌊(n.choose i * B : ℝ)⌋ := by
71-
simp only [ceil_neg, neg_le_self_iff, floor_nonneg]
72-
positivity
7370
conv => enter [1, 1, 1, p, 2, i]; rw [norm_eq_abs, abs_le]
74-
rw [card_eq_of_natDegree_le_of_coeff_le h_B]
71+
rw [card_eq_of_natDegree_le_of_coeff_le]
7572
simp only [ceil_neg, sub_neg_eq_add, ← two_mul]
7673
apply Finset.prod_congr rfl fun i _ ↦ ?_
7774
zify

0 commit comments

Comments
 (0)