@@ -35,7 +35,7 @@ noncomputable def minpolyDiv : S[X] := (minpoly R x).map (algebraMap R S) /ₘ (
3535lemma minpolyDiv_spec :
3636 minpolyDiv R x * (X - C x) = (minpoly R x).map (algebraMap R S) := by
3737 delta minpolyDiv
38- rw [mul_comm, mul_divByMonic_eq_iff_isRoot, IsRoot, eval_map, ← aeval_def , minpoly.aeval]
38+ rw [mul_comm, mul_divByMonic_eq_iff_isRoot, IsRoot, eval_map_algebraMap , minpoly.aeval]
3939
4040lemma coeff_minpolyDiv (i) : coeff (minpolyDiv R x) i =
4141 algebraMap R S (coeff (minpoly R x) (i + 1 )) + coeff (minpolyDiv R x) (i + 1 ) * x := by
@@ -48,11 +48,11 @@ lemma minpolyDiv_eq_zero (hx : ¬IsIntegral R x) : minpolyDiv R x = 0 := by
4848 rw [dif_neg hx, Polynomial.map_zero, zero_divByMonic]
4949
5050lemma eval_minpolyDiv_self : (minpolyDiv R x).eval x = aeval x (derivative <| minpoly R x) := by
51- rw [aeval_def, ← eval_map , ← derivative_map, ← minpolyDiv_spec R x]; simp
51+ rw [← eval_map_algebraMap , ← derivative_map, ← minpolyDiv_spec R x]; simp
5252
5353lemma minpolyDiv_eval_eq_zero_of_ne_of_aeval_eq_zero [IsDomain S]
5454 {y} (hxy : y ≠ x) (hy : aeval y (minpoly R x) = 0 ) : (minpolyDiv R x).eval y = 0 := by
55- rw [aeval_def, ← eval_map , ← minpolyDiv_spec R x] at hy
55+ rw [← eval_map_algebraMap , ← minpolyDiv_spec R x] at hy
5656 simp only [eval_mul, eval_sub, eval_X, eval_C, mul_eq_zero] at hy
5757 exact hy.resolve_right (by rwa [sub_eq_zero])
5858
@@ -72,7 +72,7 @@ lemma eval₂_minpolyDiv_self {T} [CommRing T] [Algebra R T] [IsDomain T] [Decid
7272 if σ₁ x = σ₂ x then σ₁ (aeval x (derivative <| minpoly R x)) else 0 := by
7373 apply eval₂_minpolyDiv_of_eval₂_eq_zero
7474 rw [AlgHom.comp_algebraMap, ← σ₂.comp_algebraMap, ← eval₂_map, ← RingHom.coe_coe, eval₂_hom,
75- eval_map, ← aeval_def , minpoly.aeval, map_zero]
75+ eval_map_algebraMap , minpoly.aeval, map_zero]
7676
7777lemma eval_minpolyDiv_of_aeval_eq_zero [IsDomain S] [DecidableEq S]
7878 {y} (hy : aeval y (minpoly R x) = 0 ) :
0 commit comments