Skip to content

Commit 91d8523

Browse files
Merge master into nightly-testing
2 parents 4dc7275 + 9d2bcc5 commit 91d8523

File tree

63 files changed

+724
-314
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

63 files changed

+724
-314
lines changed

Mathlib.lean

Lines changed: 2 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -1333,6 +1333,8 @@ import Mathlib.AlgebraicTopology.Quasicategory.StrictSegal
13331333
import Mathlib.AlgebraicTopology.RelativeCellComplex.AttachCells
13341334
import Mathlib.AlgebraicTopology.RelativeCellComplex.Basic
13351335
import Mathlib.AlgebraicTopology.SimplexCategory.Augmented
1336+
import Mathlib.AlgebraicTopology.SimplexCategory.Augmented.Basic
1337+
import Mathlib.AlgebraicTopology.SimplexCategory.Augmented.Monoidal
13361338
import Mathlib.AlgebraicTopology.SimplexCategory.Basic
13371339
import Mathlib.AlgebraicTopology.SimplexCategory.Defs
13381340
import Mathlib.AlgebraicTopology.SimplexCategory.GeneratorsRelations.Basic

Mathlib/Algebra/Group/Defs.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -817,7 +817,7 @@ independent:
817817
* Without `DivisionMonoid.div_eq_mul_inv`, you can define `/` arbitrarily.
818818
* Without `DivisionMonoid.inv_inv`, you can consider `WithTop Unit` with `a⁻¹ = ⊤` for all `a`.
819819
* Without `DivisionMonoid.mul_inv_rev`, you can consider `WithTop α` with `a⁻¹ = a` for all `a`
820-
where `α` non commutative.
820+
where `α` noncommutative.
821821
* Without `DivisionMonoid.inv_eq_of_mul`, you can consider any `CommMonoid` with `a⁻¹ = a` for all
822822
`a`.
823823

Mathlib/Algebra/Order/Hom/Basic.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -76,7 +76,7 @@ variable {ι F α β γ δ : Type*}
7676

7777
/-- `NonnegHomClass F α β` states that `F` is a type of nonnegative morphisms. -/
7878
class NonnegHomClass (F : Type*) (α β : outParam Type*) [Zero β] [LE β] [FunLike F α β] : Prop where
79-
/-- the image of any element is non negative. -/
79+
/-- the image of any element is nonnegative. -/
8080
apply_nonneg (f : F) : ∀ a, 0 ≤ f a
8181

8282
/-- `SubadditiveHomClass F α β` states that `F` is a type of subadditive morphisms. -/

Mathlib/Algebra/Order/Sub/Basic.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -206,7 +206,7 @@ namespace CanonicallyOrderedAdd
206206

207207
variable [AddCommMonoid α] [LinearOrder α] [CanonicallyOrderedAdd α]
208208

209-
-- See note [reducible non instances]
209+
-- See note [reducible non-instances]
210210
/-- `Sub` structure in linearly canonically ordered monoid using choice. -/
211211
noncomputable abbrev toSub : Sub α where
212212
sub x y := if h : y ≤ x then (exists_add_of_le h).choose else 0

Mathlib/Algebra/Ring/BooleanRing.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -363,7 +363,7 @@ instance [Inhabited α] : Inhabited (AsBoolRing α) :=
363363
‹Inhabited α›
364364

365365
-- See note [reducible non-instances]
366-
/-- Every generalized Boolean algebra has the structure of a non unital commutative ring with the
366+
/-- Every generalized Boolean algebra has the structure of a nonunital commutative ring with the
367367
following data:
368368
369369
* `a + b` unfolds to `a ∆ b` (symmetric difference)

Mathlib/Algebra/Ring/CentroidHom.lean

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -13,7 +13,7 @@ import Mathlib.Algebra.Ring.Subsemiring.Basic
1313
/-!
1414
# Centroid homomorphisms
1515
16-
Let `A` be a (non unital, non associative) algebra. The centroid of `A` is the set of linear maps
16+
Let `A` be a (nonunital, non-associative) algebra. The centroid of `A` is the set of linear maps
1717
`T` on `A` such that `T` commutes with left and right multiplication, that is to say, for all `a`
1818
and `b` in `A`,
1919
$$
@@ -599,7 +599,7 @@ section NonUnitalRing
599599

600600
variable [NonUnitalRing α]
601601

602-
-- See note [reducible non instances]
602+
-- See note [reducible non-instances]
603603
/-- A prime associative ring has commutative centroid. -/
604604
abbrev commRing
605605
(h : ∀ a b : α, (∀ r : α, a * r * b = 0) → a = 0 ∨ b = 0) : CommRing (CentroidHom α) :=

Mathlib/Algebra/Ring/Defs.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -386,7 +386,7 @@ instance (priority := 100) CommRing.toAddCommGroupWithOne [s : CommRing α] :
386386
AddCommGroupWithOne α :=
387387
{ s with }
388388

389-
/-- A domain is a nontrivial semiring such that multiplication by a non zero element
389+
/-- A domain is a nontrivial semiring such that multiplication by a nonzero element
390390
is cancellative on both sides. In other words, a nontrivial semiring `R` satisfying
391391
`∀ {a b c : R}, a ≠ 0 → a * b = a * c → b = c` and
392392
`∀ {a b c : R}, b ≠ 0 → a * b = c * b → a = c`.

Mathlib/Algebra/Star/CentroidHom.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -12,7 +12,7 @@ import Mathlib.Algebra.Star.Basic
1212
/-!
1313
# Centroid homomorphisms on Star Rings
1414
15-
When a (non unital, non-associative) semiring is equipped with an involutive automorphism the
15+
When a (nonunital, non-associative) semiring is equipped with an involutive automorphism the
1616
center of the centroid becomes a star ring in a natural way and the natural mapping of the centre of
1717
the semiring into the centre of the centroid becomes a *-homomorphism.
1818

Mathlib/AlgebraicTopology/DoldKan/Degeneracies.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -17,7 +17,7 @@ the subcomplex generated by the images of all `X.σ i`.
1717
1818
In this file, we obtain `degeneracy_comp_P_infty` which states that
1919
if `X : SimplicialObject C` with `C` a preadditive category,
20-
`θ : ⦋n⦌ ⟶ Δ'` is a non injective map in `SimplexCategory`, then
20+
`θ : ⦋n⦌ ⟶ Δ'` is a non-injective map in `SimplexCategory`, then
2121
`X.map θ.op ≫ P_infty.f n = 0`. It follows from the more precise
2222
statement vanishing statement `σ_comp_P_eq_zero` for the `P q`.
2323

Mathlib/AlgebraicTopology/SimplexCategory/Augmented.lean

Lines changed: 2 additions & 114 deletions
Original file line numberDiff line numberDiff line change
@@ -3,118 +3,6 @@ Copyright (c) 2025 Robin Carlier. All rights reserved.
33
Released under Apache 2.0 license as described in the file LICENSE.
44
Authors: Robin Carlier
55
-/
6-
import Mathlib.CategoryTheory.WithTerminal.Basic
7-
import Mathlib.AlgebraicTopology.SimplexCategory.Basic
8-
import Mathlib.AlgebraicTopology.SimplicialObject.Basic
6+
import Mathlib.AlgebraicTopology.SimplexCategory.Augmented.Basic
97

10-
/-!
11-
# The Augmented simplex category
12-
13-
This file defines the `AugmentedSimplexCategory` as the category obtained by adding an initial
14-
object to `SimplexCategory` (using `CategoryTheory.WithInitial`).
15-
16-
This definition provides a canonical full and faithful inclusion functor
17-
`inclusion : SimplexCategory ⥤ AugmentedSimplexCategory`.
18-
19-
We prove that functors out of `AugmentedSimplexCategory` are equivalent to augmented cosimplicial
20-
objects and that functors out of `AugmentedSimplexCategoryᵒᵖ` are equivalent to augmented simplicial
21-
objects, and we provide a translation of the main constrcutions on augmented (co)simplicial objects
22-
(i.e `drop`, `point` and `toArrow`) in terms of these equivalences.
23-
24-
## TODOs
25-
* Define a monoidal structure on `AugmentedSimplexCategory`.
26-
-/
27-
28-
open CategoryTheory
29-
30-
/-- The `AugmentedSimplexCategory` is the category obtained from `SimplexCategory` by adjoining an
31-
initial object. -/
32-
def AugmentedSimplexCategory := WithInitial SimplexCategory
33-
deriving SmallCategory
34-
35-
namespace AugmentedSimplexCategory
36-
37-
variable {C : Type*} [Category C]
38-
39-
/-- The canonical inclusion from `SimplexCategory` to `AugmentedSimplexCategory`. -/
40-
@[simps!]
41-
def inclusion : SimplexCategory ⥤ AugmentedSimplexCategory := WithInitial.incl
42-
43-
instance : inclusion.Full := inferInstanceAs WithInitial.incl.Full
44-
instance : inclusion.Faithful := inferInstanceAs WithInitial.incl.Faithful
45-
46-
instance : Limits.HasInitial AugmentedSimplexCategory :=
47-
inferInstanceAs <| Limits.HasInitial <| WithInitial _
48-
49-
/-- The equivalence between functors out of `AugmentedSimplexCategory` and augmented
50-
cosimplicial objects. -/
51-
@[simps!]
52-
def equivAugmentedCosimplicialObject :
53-
(AugmentedSimplexCategory ⥤ C) ≌ CosimplicialObject.Augmented C :=
54-
WithInitial.equivComma
55-
56-
/-- Through the equivalence `(AugmentedSimplexCategory ⥤ C) ≌ CosimplicialObject.Augmented C`,
57-
dropping the augmentation corresponds to precomposition with
58-
`inclusion : SimplexCategory ⥤ AugmentedSimplexCategory`. -/
59-
@[simps!]
60-
def equivAugmentedCosimplicialObjectFunctorCompDropIso :
61-
equivAugmentedCosimplicialObject.functor ⋙ CosimplicialObject.Augmented.drop ≅
62-
(Functor.whiskeringLeft _ _ C).obj inclusion :=
63-
.refl _
64-
65-
/-- Through the equivalence `(AugmentedSimplexCategory ⥤ C) ≌ CosimplicialObject.Augmented C`,
66-
taking the point of the augmentation corresponds to evaluation at the initial object. -/
67-
@[simps!]
68-
def equivAugmentedCosimplicialObjectFunctorCompPointIso :
69-
equivAugmentedCosimplicialObject.functor ⋙ CosimplicialObject.Augmented.point ≅
70-
((evaluation _ _).obj .star : (AugmentedSimplexCategory ⥤ C) ⥤ C) :=
71-
.refl _
72-
73-
@[deprecated (since := "2025-08-22")] alias equivAugmentedCosimplicialObjecFunctorCompPointIso :=
74-
equivAugmentedCosimplicialObjectFunctorCompPointIso
75-
76-
/-- Through the equivalence `(AugmentedSimplexCategory ⥤ C) ≌ CosimplicialObject.Augmented C`,
77-
the arrow attached to the cosimplicial object is the one obtained by evaluation at the unique arrow
78-
`star ⟶ of [0]`. -/
79-
@[simps!]
80-
def equivAugmentedCosimplicialObjectFunctorCompToArrowIso :
81-
equivAugmentedCosimplicialObject.functor ⋙ CosimplicialObject.Augmented.toArrow ≅
82-
Functor.mapArrowFunctor _ C ⋙
83-
(evaluation _ _ |>.obj <| .mk <| WithInitial.homTo <| .mk 0) :=
84-
.refl _
85-
86-
/-- The equivalence between functors out of `AugmentedSimplexCategory` and augmented simplicial
87-
objects. -/
88-
@[simps!]
89-
def equivAugmentedSimplicialObject :
90-
(AugmentedSimplexCategoryᵒᵖ ⥤ C) ≌ SimplicialObject.Augmented C :=
91-
WithInitial.opEquiv SimplexCategory |>.congrLeft |>.trans WithTerminal.equivComma
92-
93-
/-- Through the equivalence `(AugmentedSimplexCategoryᵒᵖ ⥤ C) ≌ SimplicialObject.Augmented C`,
94-
dropping the augmentation corresponds to precomposition with
95-
`inclusionᵒᵖ : SimplexCategoryᵒᵖ ⥤ AugmentedSimplexCategoryᵒᵖ`. -/
96-
@[simps!]
97-
def equivAugmentedSimplicialObjectFunctorCompDropIso :
98-
equivAugmentedSimplicialObject.functor ⋙ SimplicialObject.Augmented.drop ≅
99-
(Functor.whiskeringLeft _ _ C).obj inclusion.op :=
100-
.refl _
101-
102-
/-- Through the equivalence `(AugmentedSimplexCategory ⥤ C) ≌ CosimplicialObject.Augmented C`,
103-
taking the point of the augmentation corresponds to evaluation at the initial object. -/
104-
@[simps!]
105-
def equivAugmentedSimplicialObjectFunctorCompPointIso :
106-
equivAugmentedSimplicialObject.functor ⋙ SimplicialObject.Augmented.point ≅
107-
(evaluation _ C).obj (.op .star) :=
108-
.refl _
109-
110-
/-- Through the equivalence `(AugmentedSimplexCategory ⥤ C) ≌ CosimplicialObject.Augmented C`,
111-
the arrow attached to the cosimplicial object is the one obtained by evaluation at the unique arrow
112-
`star ⟶ of [0]`. -/
113-
@[simps!]
114-
def equivAugmentedSimplicialObjectFunctorCompToArrowIso :
115-
equivAugmentedSimplicialObject.functor ⋙ SimplicialObject.Augmented.toArrow ≅
116-
Functor.mapArrowFunctor _ C ⋙
117-
(evaluation _ _ |>.obj <| .mk <| .op <| WithInitial.homTo <| .mk 0) :=
118-
.refl _
119-
120-
end AugmentedSimplexCategory
8+
deprecated_module (since := "2025-07-05")

0 commit comments

Comments
 (0)