Skip to content

Commit 95c3330

Browse files
committed
merge bump/nightly-2025-12-13
2 parents 1daec5f + f84a908 commit 95c3330

File tree

95 files changed

+199
-206
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

95 files changed

+199
-206
lines changed

Mathlib/Algebra/Polynomial/Factors.lean

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -431,23 +431,23 @@ theorem splits_mul_iff (hf₀ : f ≠ 0) (hg₀ : g ≠ 0) :
431431
have := ih (by aesop) hg₀ (f * g) rfl (splits_X_sub_C_mul_iff.mp h) hn
432432
aesop
433433

434-
theorem Splits.splits_of_dvd (hg : Splits g) (hg₀ : g ≠ 0) (hfg : f ∣ g) : Splits f := by
434+
theorem Splits.of_dvd (hg : Splits g) (hg₀ : g ≠ 0) (hfg : f ∣ g) : Splits f := by
435435
obtain ⟨g, rfl⟩ := hfg
436436
exact ((splits_mul_iff (by aesop) (by aesop)).mp hg).1
437437

438438
@[deprecated (since := "2025-11-27")]
439-
alias Splits.of_dvd := Splits.splits_of_dvd
439+
alias Splits.splits_of_dvd := Splits.of_dvd
440440

441441
theorem splits_prod_iff {ι : Type*} {f : ι → R[X]} {s : Finset ι} (hf : ∀ i ∈ s, f i ≠ 0) :
442442
(∏ x ∈ s, f x).Splits ↔ ∀ x ∈ s, (f x).Splits :=
443-
fun h _ hx ↦ h.splits_of_dvd (Finset.prod_ne_zero_iff.mpr hf) (Finset.dvd_prod_of_mem f hx),
443+
fun h _ hx ↦ h.of_dvd (Finset.prod_ne_zero_iff.mpr hf) (Finset.dvd_prod_of_mem f hx),
444444
Splits.prod⟩
445445

446446
-- Todo: Remove or fix name once `Splits` is gone.
447447
theorem Splits.splits (hf : Splits f) :
448448
f = 0 ∨ ∀ {g : R[X]}, Irreducible g → g ∣ f → degree g ≤ 1 :=
449449
or_iff_not_imp_left.mpr fun hf0 _ hg hgf ↦ degree_le_of_natDegree_le <|
450-
(hf.splits_of_dvd hf0 hgf).natDegree_le_one_of_irreducible hg
450+
(hf.of_dvd hf0 hgf).natDegree_le_one_of_irreducible hg
451451

452452
lemma map_sub_sprod_roots_eq_prod_map_eval
453453
(s : Multiset R) (g : R[X]) (hg : g.Monic) (hg' : g.Splits) :

Mathlib/Algebra/Polynomial/Splits.lean

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -142,17 +142,17 @@ alias Splits.def := splits_iff_splits
142142
alias splits_of_splits_mul := splits_mul_iff
143143

144144
@[deprecated (since := "2025-11-25")]
145-
alias splits_of_splits_of_dvd := Splits.splits_of_dvd
145+
alias splits_of_splits_of_dvd := Splits.of_dvd
146146

147-
@[deprecated "Use `Splits.splits_of_dvd` directly." (since := "2025-11-30")]
147+
@[deprecated "Use `Splits.of_dvd` directly." (since := "2025-11-30")]
148148
theorem splits_of_splits_gcd_left [DecidableEq K] {f g : K[X]} (hf0 : f ≠ 0)
149149
(hf : Splits f) : Splits (EuclideanDomain.gcd f g) :=
150-
Splits.splits_of_dvd hf hf0 <| EuclideanDomain.gcd_dvd_left f g
150+
Splits.of_dvd hf hf0 <| EuclideanDomain.gcd_dvd_left f g
151151

152-
@[deprecated "Use `Splits.splits_of_dvd` directly." (since := "2025-11-30")]
152+
@[deprecated "Use `Splits.of_dvd` directly." (since := "2025-11-30")]
153153
theorem splits_of_splits_gcd_right [DecidableEq K] {f g : K[X]} (hg0 : g ≠ 0)
154154
(hg : Splits g) : Splits (EuclideanDomain.gcd f g) :=
155-
Splits.splits_of_dvd hg hg0 <| EuclideanDomain.gcd_dvd_right f g
155+
Splits.of_dvd hg hg0 <| EuclideanDomain.gcd_dvd_right f g
156156

157157
@[deprecated (since := "2025-11-30")]
158158
alias degree_eq_one_of_irreducible_of_splits := Splits.degree_eq_one_of_irreducible

Mathlib/Algebra/Ring/Subsemiring/Order.lean

Lines changed: 6 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -5,6 +5,7 @@ Authors: Damiano Testa
55
-/
66
module
77

8+
public import Mathlib.Algebra.Order.Monoid.Submonoid
89
public import Mathlib.Algebra.Order.Ring.InjSurj
910
public import Mathlib.Algebra.Ring.Subsemiring.Defs
1011
public import Mathlib.Order.Interval.Set.Defs
@@ -54,14 +55,16 @@ variable (R) in
5455
/-- The set of nonnegative elements in an ordered semiring, as a subsemiring. -/
5556
@[simps]
5657
def nonneg : Subsemiring R where
57-
carrier := Set.Ici 0
58+
__ := AddSubmonoid.nonneg R
5859
mul_mem' := mul_nonneg
5960
one_mem' := zero_le_one
60-
add_mem' := add_nonneg
61-
zero_mem' := le_rfl
6261

6362
@[simp] lemma mem_nonneg {x : R} : x ∈ nonneg R ↔ 0 ≤ x := .rfl
6463

64+
variable (R) in
65+
@[simp]
66+
theorem nonneg_toAddSubmonoid : (nonneg R).toAddSubmonoid = AddSubmonoid.nonneg R := rfl
67+
6568
end nonneg
6669

6770
end Subsemiring

Mathlib/AlgebraicTopology/SimplicialSet/Dimension.lean

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -72,14 +72,14 @@ instance (d : ℕ) [X.HasDimensionLT d] (A : X.Subcomplex) : HasDimensionLT A d
7272
simp [A.mem_degenerate_iff, X.degenerate_eq_top_of_hasDimensionLT d n hd]
7373

7474
lemma le_iff_of_hasDimensionLT (A B : X.Subcomplex) (d : ℕ) [X.HasDimensionLT d] :
75-
A ≤ B ↔ ∀ (i : ℕ) (_ : i < d), A.obj _ ∩ X.nonDegenerate i ⊆ B.obj (op ⦋i⦌) := by
75+
A ≤ B ↔ ∀ i < d, A.obj _ ∩ X.nonDegenerate i ⊆ B.obj (op ⦋i⦌) := by
7676
refine ⟨fun h i hi a ⟨ha, _⟩ ↦ h _ ha, fun h ↦ ?_⟩
7777
rw [le_iff_contains_nonDegenerate]
7878
rintro n x hx
7979
exact h _ (X.dim_lt_of_nonDegenerate x d) ⟨hx, x.prop⟩
8080

8181
lemma eq_top_iff_of_hasDimensionLT (A : X.Subcomplex) (d : ℕ) [X.HasDimensionLT d] :
82-
A = ⊤ ↔ ∀ (i : ℕ) (_ : i < d), X.nonDegenerate i ⊆ A.obj _ := by
82+
A = ⊤ ↔ ∀ i < d, X.nonDegenerate i ⊆ A.obj _ := by
8383
simp [← top_le_iff, le_iff_of_hasDimensionLT ⊤ A d]
8484

8585
end Subcomplex

Mathlib/Analysis/Calculus/ContDiff/FaaDiBruno.lean

Lines changed: 3 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -548,10 +548,11 @@ def eraseMiddle (c : OrderedFinpartition (n + 1)) (hc : range (c.emb 0) ≠ {0})
548548
rw [← Nat.add_lt_add_iff_right (k := 1)]
549549
convert Fin.lt_def.1 (c.parts_strictMono hij)
550550
· rcases eq_or_ne i (c.index 0) with rfl | hi
551+
-- We do not yet replace `omega` with `lia` here, as it is measurably slower.
551552
· simp only [↓reduceDIte, update_self, succ_mk, cast_mk, val_pred]
552553
have A := c.one_lt_partSize_index_zero hc
553554
rw [Nat.sub_add_cancel]
554-
· congr; lia
555+
· congr; omega
555556
· rw [Order.one_le_iff_pos]
556557
conv_lhs => rw [show (0 : ℕ) = c.emb (c.index 0) 0 by simp [emb_zero]]
557558
rw [← lt_def]
@@ -562,7 +563,7 @@ def eraseMiddle (c : OrderedFinpartition (n + 1)) (hc : range (c.emb 0) ≠ {0})
562563
have : c.emb i ⟨c.partSize i - 1, Nat.sub_one_lt_of_lt (c.partSize_pos i)⟩
563564
≠ c.emb (c.index 0) 0 := c.emb_ne_emb_of_ne hi
564565
simp only [c.emb_zero, ne_eq, ← val_eq_val, val_zero] at this
565-
lia
566+
omega
566567
· rcases eq_or_ne j (c.index 0) with rfl | hj
567568
· simp only [↓reduceDIte, update_self, succ_mk, cast_mk, val_pred]
568569
have A := c.one_lt_partSize_index_zero hc

Mathlib/CategoryTheory/Bicategory/InducedBicategory.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -22,7 +22,7 @@ of 1-morphisms as well. However, this needs more thought. If one tries the naive
2222
replacing the map `F` below with a "functor" (between `CategoryStruct`s), one runs into the issue
2323
that `map_comp` and `map_id` might not be definitional equalities (which they should be in
2424
practice). Hence one needs to carefully carry these around, or specify `F` in a way that ensures
25-
they are def-eqs, perhaps constructing it from specified `MorhpismProperty`s.
25+
they are def-eqs, perhaps constructing it from specified `MorphismProperty`s.
2626
-/
2727

2828
@[expose] public section

Mathlib/CategoryTheory/Bicategory/NaturalTransformation/Oplax.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -73,7 +73,7 @@ structure LaxTrans (F G : OplaxFunctor B C) where
7373
naturality_naturality {a b : B} {f g : a ⟶ b} (η : f ⟶ g) :
7474
naturality f ≫ F.map₂ η ▷ app b = app a ◁ G.map₂ η ≫ naturality g := by
7575
cat_disch
76-
naturality_id (a : B):
76+
naturality_id (a : B) :
7777
naturality (𝟙 a) ≫ F.mapId a ▷ app a =
7878
app a ◁ G.mapId a ≫ (ρ_ (app a)).hom ≫ (λ_ (app a)).inv := by
7979
cat_disch

Mathlib/CategoryTheory/ComposableArrows/One.lean

Lines changed: 1 addition & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -26,8 +26,7 @@ variable (C : Type u) [Category.{v} C]
2626
which sends `S` to `mk₁ (S.map' i j)` when `i`, `j` and `n`
2727
are such that `i ≤ j` and `j ≤ n`. -/
2828
@[simps]
29-
noncomputable def functorArrows (i j n : ℕ) (hij : i ≤ j := by lia)
30-
(hj : j ≤ n := by lia) :
29+
noncomputable def functorArrows (i j n : ℕ) (hij : i ≤ j := by lia) (hj : j ≤ n := by lia) :
3130
ComposableArrows C n ⥤ ComposableArrows C 1 where
3231
obj S := mk₁ (S.map' i j)
3332
map {S S'} φ := homMk₁ (φ.app _) (φ.app _) (φ.naturality _)

Mathlib/CategoryTheory/Enriched/Ordinary/Basic.lean

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -231,8 +231,8 @@ open EnrichedCategory
231231
then `F` induces the structure of a `W`-enriched ordinary category on `TransportEnrichment F C`,
232232
i.e. on the same underlying category `C`. -/
233233
def TransportEnrichment.enrichedOrdinaryCategory
234-
(e : ∀ v : V, (𝟙_ V ⟶ v) ≃ (𝟙_ W ⟶ F.obj v))
235-
(h : ∀ v : V, ∀ f : 𝟙_ V ⟶ v, e v f = Functor.LaxMonoidal.ε F ≫ F.map f) :
234+
(e : ∀ v : V, (𝟙_ V ⟶ v) ≃ (𝟙_ W ⟶ F.obj v))
235+
(h : ∀ v : V, ∀ f : 𝟙_ V ⟶ v, e v f = Functor.LaxMonoidal.ε F ≫ F.map f) :
236236
EnrichedOrdinaryCategory W (TransportEnrichment F C) where
237237
homEquiv {X Y} := (eHomEquiv V (C := C)).trans (e (Hom (C := C) X Y))
238238
homEquiv_id {X} := by simpa using h _ (eId V _)

Mathlib/CategoryTheory/Functor/Flat.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -23,7 +23,7 @@ over `X` is cofiltered for each `X`. This concept is also known as flat functors
2323
Remark C2.3.7, and this name is suggested by Mike Shulman in
2424
https://golem.ph.utexas.edu/category/2011/06/flat_functors_and_morphisms_of.html to avoid
2525
confusion with other notions of flatness (e.g. see the notion of flat type-valued
26-
functor in the file `Functor.TypeValuedFlat`).
26+
functor in the file `Mathlib/CategoryTheory/Functor/TypeValuedFlat.lean`).
2727
2828
This definition is equivalent to left exact functors (functors that preserves finite limits) when
2929
`C` has all finite limits.

0 commit comments

Comments
 (0)