Skip to content

Commit 9715c1d

Browse files
committed
fix merge
1 parent 4309186 commit 9715c1d

File tree

2 files changed

+2
-7
lines changed

2 files changed

+2
-7
lines changed

Mathlib/Algebra/CharP/Defs.lean

Lines changed: 0 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -197,11 +197,6 @@ section
197197

198198
variable [NonAssocRing R]
199199

200-
lemma cast_eq_mod (p : ℕ) [CharP R p] (k : ℕ) : (k : R) = (k % p : ℕ) :=
201-
calc
202-
(k : R) = ↑(k % p + p * (k / p)) := by rw [Nat.mod_add_div]
203-
_ = ↑(k % p) := by simp
204-
205200
lemma ringChar_zero_iff_CharZero : ringChar R = 0 ↔ CharZero R := by
206201
rw [ringChar.eq_iff, charP_zero_iff_charZero]
207202

Mathlib/Data/Int/ModEq.lean

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -195,7 +195,7 @@ theorem of_div (h : a / c ≡ b / c [ZMOD m / c]) (ha : c ∣ a) (ha : c ∣ b)
195195
For cancelling left multiplication in the modulus, see `Int.ModEq.of_mul_left`. -/
196196
protected theorem mul_left_cancel' (hc : c ≠ 0) :
197197
c * a ≡ c * b [ZMOD c * m] → a ≡ b [ZMOD m] := by
198-
simp only [modEq_iff_dvd, Int.natCast_mul, ← Int.mul_sub]
198+
simp only [modEq_iff_dvd, ← Int.mul_sub]
199199
exact Int.dvd_of_mul_dvd_mul_left hc
200200

201201
protected theorem mul_left_cancel_iff' (hc : c ≠ 0) :
@@ -207,7 +207,7 @@ protected theorem mul_left_cancel_iff' (hc : c ≠ 0) :
207207
For cancelling right multiplication in the modulus, see `Int.ModEq.of_mul_right`. -/
208208
protected theorem mul_right_cancel' (hc : c ≠ 0) :
209209
a * c ≡ b * c [ZMOD m * c] → a ≡ b [ZMOD m] := by
210-
simp only [modEq_iff_dvd, Int.natCast_mul, ← Int.sub_mul]
210+
simp only [modEq_iff_dvd, ← Int.sub_mul]
211211
exact Int.dvd_of_mul_dvd_mul_right hc
212212

213213
protected theorem mul_right_cancel_iff' (hc : c ≠ 0) :

0 commit comments

Comments
 (0)