File tree Expand file tree Collapse file tree 2 files changed +2
-7
lines changed
Expand file tree Collapse file tree 2 files changed +2
-7
lines changed Original file line number Diff line number Diff line change @@ -197,11 +197,6 @@ section
197197
198198variable [NonAssocRing R]
199199
200- lemma cast_eq_mod (p : ℕ) [CharP R p] (k : ℕ) : (k : R) = (k % p : ℕ) :=
201- calc
202- (k : R) = ↑(k % p + p * (k / p)) := by rw [Nat.mod_add_div]
203- _ = ↑(k % p) := by simp
204-
205200lemma ringChar_zero_iff_CharZero : ringChar R = 0 ↔ CharZero R := by
206201 rw [ringChar.eq_iff, charP_zero_iff_charZero]
207202
Original file line number Diff line number Diff line change @@ -195,7 +195,7 @@ theorem of_div (h : a / c ≡ b / c [ZMOD m / c]) (ha : c ∣ a) (ha : c ∣ b)
195195For cancelling left multiplication in the modulus, see `Int.ModEq.of_mul_left`. -/
196196protected theorem mul_left_cancel' (hc : c ≠ 0 ) :
197197 c * a ≡ c * b [ZMOD c * m] → a ≡ b [ZMOD m] := by
198- simp only [modEq_iff_dvd, Int.natCast_mul, ← Int.mul_sub]
198+ simp only [modEq_iff_dvd, ← Int.mul_sub]
199199 exact Int.dvd_of_mul_dvd_mul_left hc
200200
201201protected theorem mul_left_cancel_iff' (hc : c ≠ 0 ) :
@@ -207,7 +207,7 @@ protected theorem mul_left_cancel_iff' (hc : c ≠ 0) :
207207For cancelling right multiplication in the modulus, see `Int.ModEq.of_mul_right`. -/
208208protected theorem mul_right_cancel' (hc : c ≠ 0 ) :
209209 a * c ≡ b * c [ZMOD m * c] → a ≡ b [ZMOD m] := by
210- simp only [modEq_iff_dvd, Int.natCast_mul, ← Int.sub_mul]
210+ simp only [modEq_iff_dvd, ← Int.sub_mul]
211211 exact Int.dvd_of_mul_dvd_mul_right hc
212212
213213protected theorem mul_right_cancel_iff' (hc : c ≠ 0 ) :
You can’t perform that action at this time.
0 commit comments