@@ -214,7 +214,7 @@ def toCoinduced (i) : X i ⟶ coinduced f :=
214214
215215/-- The cocone of topological modules associated to a cocone over the underlying modules, where
216216the cocone point is given the coinduced topology. This is colimiting when the given cocone is. -/
217- def ofCocone {J : Type *} [Category J] {F : J ⥤ TopModuleCat R}
217+ def ofCocone {J : Type *} [Category* J] {F : J ⥤ TopModuleCat R}
218218 (c : Cocone (F ⋙ forget₂ _ (ModuleCat R))) : Cocone F where
219219 pt := coinduced c.ι.app
220220 ι :=
@@ -223,7 +223,7 @@ def ofCocone {J : Type*} [Category J] {F : J ⥤ TopModuleCat R}
223223
224224/-- Given a colimit cocone over the underlying modules, equipping the cocone point with
225225the coinduced topology gives a colimit cocone in `TopModuleCat R`. -/
226- def isColimit {J : Type *} [Category J] {F : J ⥤ TopModuleCat R}
226+ def isColimit {J : Type *} [Category* J] {F : J ⥤ TopModuleCat R}
227227 {c : Cocone (F ⋙ forget₂ _ (ModuleCat R))} (hc : IsColimit c) :
228228 IsColimit (ofCocone c) where
229229 desc s := ofHom (X := (ofCocone c).pt) ⟨(hc.desc ((forget₂ _ _).mapCocone s)).hom, by
@@ -242,11 +242,11 @@ def isColimit {J : Type*} [Category J] {F : J ⥤ TopModuleCat R}
242242 ext y
243243 exact congr($(H j).hom y)
244244
245- instance {J : Type*} [Category J] {F : J ⥤ TopModuleCat R}
245+ instance {J : Type*} [Category* J] {F : J ⥤ TopModuleCat R}
246246 [HasColimit (F ⋙ forget₂ _ (ModuleCat R))] : HasColimit F :=
247247 ⟨_, isColimit (colimit.isColimit _)⟩
248248
249- instance {J : Type*} [Category J] [HasColimitsOfShape J (ModuleCat.{v} R)] :
249+ instance {J : Type*} [Category* J] [HasColimitsOfShape J (ModuleCat.{v} R)] :
250250 HasColimitsOfShape J (TopModuleCat.{v} R) where
251251
252252instance : HasColimits (TopModuleCat.{v} R) where
@@ -275,7 +275,7 @@ open Limits
275275
276276/-- The cone of topological modules associated to a cone over the underlying modules, where
277277the cone point is given the induced topology. This is limiting when the given cone is. -/
278- def ofCone {J : Type *} [Category J] {F : J ⥤ TopModuleCat R}
278+ def ofCone {J : Type *} [Category* J] {F : J ⥤ TopModuleCat R}
279279 (c : Cone (F ⋙ forget₂ _ (ModuleCat R))) : Cone F where
280280 pt := induced c.π.app
281281 π :=
@@ -284,7 +284,7 @@ def ofCone {J : Type*} [Category J] {F : J ⥤ TopModuleCat R}
284284
285285/-- Given a limit cone over the underlying modules, equipping the cone point with
286286the induced topology gives a limit cone in `TopModuleCat R`. -/
287- def isLimit {J : Type *} [Category J] {F : J ⥤ TopModuleCat R}
287+ def isLimit {J : Type *} [Category* J] {F : J ⥤ TopModuleCat R}
288288 {c : Cone (F ⋙ forget₂ _ (ModuleCat R))} (hc : IsLimit c) :
289289 IsLimit (ofCone c) where
290290 lift s := ofHom (Y := (ofCone c).pt) ⟨(hc.lift ((forget₂ _ _).mapCone s)).hom, by
@@ -302,18 +302,18 @@ def isLimit {J : Type*} [Category J] {F : J ⥤ TopModuleCat R}
302302 ext y
303303 exact congr($(H j).hom y)
304304
305- instance hasLimit_of_hasLimit_forget₂ {J : Type *} [Category J] {F : J ⥤ TopModuleCat.{v} R}
305+ instance hasLimit_of_hasLimit_forget₂ {J : Type *} [Category* J] {F : J ⥤ TopModuleCat.{v} R}
306306 [HasLimit (F ⋙ forget₂ _ (ModuleCat.{v} R))] : HasLimit F :=
307307 ⟨_, isLimit (limit.isLimit _)⟩
308308
309- instance {J : Type*} [Category J] [HasLimitsOfShape J (ModuleCat.{v} R)] :
309+ instance {J : Type*} [Category* J] [HasLimitsOfShape J (ModuleCat.{v} R)] :
310310 HasLimitsOfShape J (TopModuleCat.{v} R) where
311311 has_limit _ := hasLimit_of_hasLimit_forget₂
312312
313313instance : HasLimits (TopModuleCat.{v} R) where
314314 has_limits_of_shape _ _ := ⟨fun _ ↦ hasLimit_of_hasLimit_forget₂⟩
315315
316- instance {J : Type*} [Category J] {F : J ⥤ TopModuleCat.{v} R}
316+ instance {J : Type*} [Category* J] {F : J ⥤ TopModuleCat.{v} R}
317317 [HasLimit (F ⋙ forget₂ _ (ModuleCat.{v} R))]
318318 [PreservesLimit (F ⋙ forget₂ _ (ModuleCat.{v} R)) (forget _)] :
319319 PreservesLimit F (forget₂ _ TopCat) :=
@@ -322,7 +322,7 @@ instance {J : Type*} [Category J] {F : J ⥤ TopModuleCat.{v} R}
322322 ((forget _).mapCone (getLimitCone (F ⋙ forget₂ _ (ModuleCat.{v} R))).1 :)
323323 (isLimitOfPreserves (forget (ModuleCat R)) (limit.isLimit _)))
324324
325- instance {J : Type*} [Category J]
325+ instance {J : Type*} [Category* J]
326326 [HasLimitsOfShape J (ModuleCat.{v} R)]
327327 [PreservesLimitsOfShape J (forget (ModuleCat.{v} R))] :
328328 PreservesLimitsOfShape J (forget₂ (TopModuleCat.{v} R) TopCat) where
0 commit comments