Skip to content

Commit c1c0159

Browse files
committed
chore: adapt whitespace (#25968)
Found by #24465.
1 parent dd11af0 commit c1c0159

File tree

2 files changed

+3
-3
lines changed

2 files changed

+3
-3
lines changed

Mathlib/Algebra/Order/Archimedean/Class.lean

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -97,7 +97,7 @@ theorem le_def {a b : MulArchimedeanOrder M} : a ≤ b ↔ ∃ n, |b.val|ₘ ≤
9797
@[to_additive]
9898
theorem lt_def {a b : MulArchimedeanOrder M} : a < b ↔ ∀ n, |b.val|ₘ ^ n < |a.val|ₘ := .rfl
9999

100-
variable {M: Type*}
100+
variable {M : Type*}
101101
variable [CommGroup M] [LinearOrder M] [IsOrderedMonoid M] {a b : M}
102102

103103
@[to_additive]
@@ -299,7 +299,7 @@ theorem mk_mul_eq_mk_right (h : mk b < mk a) : mk (a * b) = mk b :=
299299
/-- The product over a set of an elements in distinct classes is in the lowest class. -/
300300
@[to_additive "The sum over a set of an elements in distinct classes is in the lowest class."]
301301
theorem mk_prod {ι : Type*} [LinearOrder ι] {s : Finset ι} (hnonempty : s.Nonempty)
302-
{a : ι → M} :
302+
{a : ι → M} :
303303
StrictMonoOn (mk ∘ a) s → mk (∏ i ∈ s, (a i)) = mk (a (s.min' hnonempty)) := by
304304
induction hnonempty using Finset.Nonempty.cons_induction with
305305
| singleton i => simp

Mathlib/GroupTheory/RegularWreathProduct.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -236,7 +236,7 @@ lemma iteratedWreathToPermHomInj (G : Type*) [Group G] :
236236
(RegularWreathProduct.toPermInj (IteratedWreathProduct G n) G (Fin n → G))
237237

238238
/-- The encoding of the Sylow `p`-subgroups of `Perm α` as an iterated wreath product. -/
239-
noncomputable def Sylow.mulEquivIteratedWreathProduct (p : ℕ) [hp : Fact (Nat.Prime p)] (n : ℕ)
239+
noncomputable def Sylow.mulEquivIteratedWreathProduct (p : ℕ) [hp : Fact (Nat.Prime p)] (n : ℕ)
240240
(α : Type*) [Finite α] (hα : Nat.card α = p ^ n)
241241
(G : Type*) [Group G] [Finite G] (hG : Nat.card G = p)
242242
(P : Sylow p (Equiv.Perm α)) :

0 commit comments

Comments
 (0)