|
| 1 | +/- |
| 2 | +Copyright (c) 2025 Robin Carlier. All rights reserved. |
| 3 | +Released under Apache 2.0 license as described in the file LICENSE. |
| 4 | +Authors: Robin Carlier |
| 5 | +-/ |
| 6 | +import Mathlib.CategoryTheory.Join.Basic |
| 7 | +import Mathlib.CategoryTheory.Opposites |
| 8 | + |
| 9 | +/-! |
| 10 | +# Opposites of joins of categories |
| 11 | +
|
| 12 | +This file constructs the canonical equivalence of categories `(C ⋆ D)ᵒᵖ ≌ Dᵒᵖ ⋆ Cᵒᵖ`. |
| 13 | +The equivalence gets characterized in both directions. |
| 14 | +
|
| 15 | +-/ |
| 16 | + |
| 17 | +namespace CategoryTheory.Join |
| 18 | +open Opposite |
| 19 | + |
| 20 | +universe v₁ v₂ u₁ u₂ |
| 21 | + |
| 22 | +variable (C : Type u₁) (D : Type u₂) [Category.{v₁} C] [Category.{v₂} D] |
| 23 | + |
| 24 | +/-- The equivalence `(C ⋆ D)ᵒᵖ ≌ Dᵒᵖ ⋆ Cᵒᵖ` induced by `Join.opEquivFunctor` and |
| 25 | +`Join.opEquivInverse`. -/ |
| 26 | +def opEquiv : (C ⋆ D)ᵒᵖ ≌ Dᵒᵖ ⋆ Cᵒᵖ where |
| 27 | + functor := Functor.leftOp <| |
| 28 | + Join.mkFunctor (inclRight _ _).rightOp (inclLeft _ _).rightOp {app _ := (edge _ _).op} |
| 29 | + inverse := Join.mkFunctor (inclRight _ _).op (inclLeft _ _).op {app _ := (edge _ _).op} |
| 30 | + unitIso := NatIso.ofComponents |
| 31 | + (fun |
| 32 | + | op (left _) => Iso.refl _ |
| 33 | + | op (right _) => Iso.refl _ ) |
| 34 | + (@fun |
| 35 | + | op (left _), op (left _), _ => by aesop_cat |
| 36 | + | op (right _), op (left _), _ => by aesop_cat |
| 37 | + | op (right _), op (right _), _ => by aesop_cat) |
| 38 | + counitIso := NatIso.ofComponents |
| 39 | + (fun |
| 40 | + | left _ => Iso.refl _ |
| 41 | + | right _ => Iso.refl _) |
| 42 | + functor_unitIso_comp |
| 43 | + | op (left _) => by aesop_cat |
| 44 | + | op (right _) => by aesop_cat |
| 45 | + |
| 46 | +variable {C} in |
| 47 | +@[simp] |
| 48 | +lemma opEquiv_functor_obj_op_left (c : C) : |
| 49 | + (opEquiv C D).functor.obj (op <| left c) = right (op c) := |
| 50 | + rfl |
| 51 | + |
| 52 | +variable {D} in |
| 53 | +@[simp] |
| 54 | +lemma opEquiv_functor_obj_op_right (d : D) : |
| 55 | + (opEquiv C D).functor.obj (op <| right d) = left (op d) := |
| 56 | + rfl |
| 57 | + |
| 58 | +variable {C} in |
| 59 | +@[simp] |
| 60 | +lemma opEquiv_functor_map_op_inclLeft {c c' : C} (f : c ⟶ c') : |
| 61 | + (opEquiv C D).functor.map (op <| (inclLeft C D).map f) = (inclRight _ _).map (op f) := |
| 62 | + rfl |
| 63 | + |
| 64 | +variable {D} in |
| 65 | +@[simp] |
| 66 | +lemma opEquiv_functor_map_op_inclRight {d d' : D} (f : d ⟶ d') : |
| 67 | + (opEquiv C D).functor.map (op <| (inclRight C D).map f) = (inclLeft _ _).map (op f) := |
| 68 | + rfl |
| 69 | + |
| 70 | +variable {C D} in |
| 71 | +lemma opEquiv_functor_map_op_edge (c : C) (d : D) : |
| 72 | + (opEquiv C D).functor.map (op <| edge c d) = edge (op d) (op c) := |
| 73 | + rfl |
| 74 | + |
| 75 | +/-- Characterize (up to a rightOp) the action of the left inclusion on `Join.opEquivFunctor`. -/ |
| 76 | +@[simps!] |
| 77 | +def InclLeftCompRightOpOpEquivFunctor : |
| 78 | + inclLeft C D ⋙ (opEquiv C D).functor.rightOp ≅ (inclRight _ _).rightOp := |
| 79 | + isoWhiskerLeft _ (Functor.leftOpRightOpIso _) ≪≫ mkFunctorLeft _ _ _ |
| 80 | + |
| 81 | +/-- Characterize (up to a rightOp) the action of the right inclusion on `Join.opEquivFunctor`. -/ |
| 82 | +@[simps!] |
| 83 | +def InclRightCompRightOpOpEquivFunctor : |
| 84 | + inclRight C D ⋙ (opEquiv C D).functor.rightOp ≅ (inclLeft _ _).rightOp := |
| 85 | + isoWhiskerLeft _ (Functor.leftOpRightOpIso _) ≪≫ mkFunctorRight _ _ _ |
| 86 | + |
| 87 | +variable {D} in |
| 88 | +@[simp] |
| 89 | +lemma opEquiv_inverse_obj_left_op (d : D) : |
| 90 | + (opEquiv C D).inverse.obj (left <| op d) = op (right d) := |
| 91 | + rfl |
| 92 | + |
| 93 | +variable {C} in |
| 94 | +@[simp] |
| 95 | +lemma opEquiv_inverse_obj_right_op (c : C) : |
| 96 | + (opEquiv C D).inverse.obj (right <| op c) = op (left c) := |
| 97 | + rfl |
| 98 | + |
| 99 | +variable {D} in |
| 100 | +@[simp] |
| 101 | +lemma opEquiv_inverse_map_inclLeft_op {d d' : D} (f : d ⟶ d') : |
| 102 | + (opEquiv C D).inverse.map ((inclLeft Dᵒᵖ Cᵒᵖ).map f.op) = op ((inclRight _ _).map f) := |
| 103 | + rfl |
| 104 | + |
| 105 | +variable {D} in |
| 106 | +@[simp] |
| 107 | +lemma opEquiv_inverse_map_inclRight_op {c c' : C} (f : c ⟶ c') : |
| 108 | + (opEquiv C D).inverse.map ((inclRight Dᵒᵖ Cᵒᵖ).map f.op) = op ((inclLeft _ _).map f) := |
| 109 | + rfl |
| 110 | + |
| 111 | +variable {C D} in |
| 112 | +@[simp] |
| 113 | +lemma opEquiv_inverse_map_edge_op (c : C) (d : D) : |
| 114 | + (opEquiv C D).inverse.map (edge (op d) (op c)) = op (edge c d) := |
| 115 | + rfl |
| 116 | + |
| 117 | +/-- Characterize `Join.opEquivInverse` with respect to the left inclusion -/ |
| 118 | +def inclLeftCompOpEquivInverse : |
| 119 | + Join.inclLeft Dᵒᵖ Cᵒᵖ ⋙ (opEquiv C D).inverse ≅ (inclRight _ _).op := |
| 120 | + Join.mkFunctorLeft _ _ _ |
| 121 | + |
| 122 | +/-- Characterize `Join.opEquivInverse` with respect to the right inclusion -/ |
| 123 | +def inclRightCompOpEquivInverse : |
| 124 | + Join.inclRight Dᵒᵖ Cᵒᵖ ⋙ (opEquiv C D).inverse ≅ (inclLeft _ _).op := |
| 125 | + Join.mkFunctorRight _ _ _ |
| 126 | + |
| 127 | +variable {D} in |
| 128 | +@[simp] |
| 129 | +lemma inclLeftCompOpEquivInverse_hom_app_op (d : D) : |
| 130 | + (inclLeftCompOpEquivInverse C D).hom.app (op d) = 𝟙 (op <| right d) := |
| 131 | + rfl |
| 132 | + |
| 133 | +variable {C} in |
| 134 | +@[simp] |
| 135 | +lemma inclRightCompOpEquivInverse_hom_app_op (c : C) : |
| 136 | + (inclRightCompOpEquivInverse C D).hom.app (op c) = 𝟙 (op <| left c) := |
| 137 | + rfl |
| 138 | + |
| 139 | +variable {D} in |
| 140 | +@[simp] |
| 141 | +lemma inclLeftCompOpEquivInverse_inv_app_op (d : D) : |
| 142 | + (inclLeftCompOpEquivInverse C D).inv.app (op d) = 𝟙 (op <| right d) := |
| 143 | + rfl |
| 144 | + |
| 145 | +variable {C} in |
| 146 | +@[simp] |
| 147 | +lemma inclRightCompOpEquivInverse_inv_app_op (c : C) : |
| 148 | + (inclRightCompOpEquivInverse C D).inv.app (op c) = 𝟙 (op <| left c) := |
| 149 | + rfl |
| 150 | + |
| 151 | +end CategoryTheory.Join |
0 commit comments