@@ -404,7 +404,7 @@ theorem get_insert_self [LawfulBEq α] (h : m.1.WF) {k : α} {v : β k} :
404404
405405theorem toList_insert_perm [EquivBEq α] [LawfulHashable α] (h : m.1 .WF) {k : α} {v : β k} :
406406 (m.insert k v).1 .toList.Perm (⟨k, v⟩ :: m.1 .toList.filter (¬k == ·.1 )) := by
407- simp_to_model using List.Perm.trans (toListModel_insert ( by wf_trivial) ) <| List.insertEntry_perm_filter _ _ _
407+ simp_to_model using List.Perm.trans (toListModel_insert _ ) <| List.insertEntry_perm_filter _ _ _
408408
409409theorem Const.toList_insert_perm {β : Type v} (m : Raw₀ α (fun _ => β)) [EquivBEq α] [LawfulHashable α] (h : m.1 .WF) {k : α} {v : β} :
410410 (Raw.Const.toList (m.insert k v).1 ).Perm ((k, v) :: (Raw.Const.toList m.1 ).filter (¬k == ·.1 )) := by
@@ -413,14 +413,14 @@ theorem Const.toList_insert_perm {β : Type v} (m : Raw₀ α (fun _ => β)) [Eq
413413 apply List.Perm.trans <| List.Const.map_insertEntry_perm_filter_map _ _ (by wf_trivial)
414414 simp
415415
416- theorem Const. keys_insertIfNew_perm (m : Raw₀ α (fun _ => Unit)) [EquivBEq α] [LawfulHashable α] (h : m.1 .WF) {k : α} :
417- (m.insertIfNew k () ).1 .keys.Perm (if m.contains k then m.1 .keys else k :: m.1 .keys) := by
416+ theorem keys_insertIfNew_perm [EquivBEq α] [LawfulHashable α] (h : m.1 .WF) {k : α} {v : β k} :
417+ (m.insertIfNew k v ).1 .keys.Perm (if m.contains k then m.1 .keys else k :: m.1 .keys) := by
418418 simp_to_model
419419 apply List.Perm.trans
420- · simp only [keys_eq_map]
421- apply List.Perm.map _ <| toListModel_insertIfNew (by wf_trivial)
420+ simp only [keys_eq_map]
421+ apply List.Perm.map _ <| toListModel_insertIfNew (by wf_trivial)
422422 simp only [← keys_eq_map]
423- apply List.Const. keys_insertEntryIfNew_perm
423+ apply List.keys_insertEntryIfNew_perm
424424
425425@[simp]
426426theorem get_erase [LawfulBEq α] (h : m.1 .WF) {k a : α} {h'} :
0 commit comments