Skip to content

Commit 240c0e3

Browse files
committed
chore: address comments
1 parent 07a6c78 commit 240c0e3

File tree

1 file changed

+7
-7
lines changed

1 file changed

+7
-7
lines changed

src/Init/Data/BitVec/Lemmas.lean

Lines changed: 7 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -5822,7 +5822,7 @@ theorem reverse_reverse_eq {x : BitVec w} :
58225822
rw [getElem_reverse, getMsbD_reverse, getLsbD_eq_getElem]
58235823

58245824
@[simp]
5825-
theorem concat_reverse_setWidth_msb_eq_reverse {x : BitVec (w + 1)}:
5825+
theorem concat_reverse_setWidth_msb_eq_reverse {x : BitVec (w + 1)} :
58265826
concat ((x.setWidth w).reverse) x.msb = x.reverse := by
58275827
ext i hi
58285828
simp only [getElem_reverse, BitVec.msb, getElem_concat, getMsbD_setWidth, Nat.le_add_right,
@@ -6402,7 +6402,7 @@ theorem cons_cpopNatRec_eq_cpopNatRec_add {x : BitVec w} {b : Bool} (hn : w < n)
64026402

64036403

64046404
theorem concat_cpopNatRec_eq_add_cpopNatRec_of_lt {x : BitVec w} {b : Bool} (hn : 0 < n) :
6405-
((concat x b).cpopNatRec n) = b.toNat + x.cpopNatRec (n - 1) := by
6405+
(concat x b).cpopNatRec n = b.toNat + x.cpopNatRec (n - 1) := by
64066406
induction n
64076407
· omega
64086408
· case _ n ihn =>
@@ -6451,16 +6451,16 @@ theorem concat_cpop {x : BitVec w} {b : Bool} :
64516451
have := cpopNat_le (x := x)
64526452
by_cases b <;> simp
64536453

6454-
theorem cons_cpopNat_eq_concat_cpopNat {w : Nat} (x : BitVec w) :
6454+
theorem cons_cpopNat_eq_concat_cpopNat (x : BitVec w) :
64556455
(x.cons y).cpopNat = (x.concat y).cpopNat := by
64566456
rw [cpopNat_cons, concat_cpopNat]
64576457

6458-
theorem cpop_cons_eq_cpop_concat {w : Nat} (x : BitVec w) :
6458+
theorem cpop_cons_eq_cpop_concat (x : BitVec w) :
64596459
(x.cons y).cpop v = (x.concat y).cpop v := by
64606460
simp [cpop, cons_cpopNat_eq_concat_cpopNat]
64616461

64626462
@[simp]
6463-
theorem reverse_cpopNat {w : Nat} (x : BitVec w) :
6463+
theorem reverse_cpopNat (x : BitVec w) :
64646464
x.reverse.cpopNat = x.cpopNat := by
64656465
induction w
64666466
case zero =>
@@ -6472,11 +6472,11 @@ theorem reverse_cpopNat {w : Nat} (x : BitVec w) :
64726472
rw [← cons_msb_setWidth (x := x), cpopNat_cons]
64736473

64746474
@[simp]
6475-
theorem reverse_cpop {w : Nat} (x : BitVec w) :
6475+
theorem reverse_cpop (x : BitVec w) :
64766476
x.reverse.cpop v = x.cpop v := by
64776477
simp [cpop]
64786478

6479-
theorem cast_cpopNatRec_eq_cpopNatRec_of_eq {x : BitVec w} (p : w = v) :
6479+
theorem cast_cpopNatRec_eq_cpopNatRec_of_eq {x : BitVec w} (p : w = v) :
64806480
(x.cast p).cpopNatRec n = x.cpopNatRec n := by
64816481
congr
64826482
· omega

0 commit comments

Comments
 (0)