@@ -5822,7 +5822,7 @@ theorem reverse_reverse_eq {x : BitVec w} :
58225822 rw [getElem_reverse, getMsbD_reverse, getLsbD_eq_getElem]
58235823
58245824@[simp]
5825- theorem concat_reverse_setWidth_msb_eq_reverse {x : BitVec (w + 1 )}:
5825+ theorem concat_reverse_setWidth_msb_eq_reverse {x : BitVec (w + 1 )} :
58265826 concat ((x.setWidth w).reverse) x.msb = x.reverse := by
58275827 ext i hi
58285828 simp only [getElem_reverse, BitVec.msb, getElem_concat, getMsbD_setWidth, Nat.le_add_right,
@@ -6402,7 +6402,7 @@ theorem cons_cpopNatRec_eq_cpopNatRec_add {x : BitVec w} {b : Bool} (hn : w < n)
64026402
64036403
64046404theorem concat_cpopNatRec_eq_add_cpopNatRec_of_lt {x : BitVec w} {b : Bool} (hn : 0 < n) :
6405- (( concat x b).cpopNatRec n) = b.toNat + x.cpopNatRec (n - 1 ) := by
6405+ (concat x b).cpopNatRec n = b.toNat + x.cpopNatRec (n - 1 ) := by
64066406 induction n
64076407 · omega
64086408 · case _ n ihn =>
@@ -6451,16 +6451,16 @@ theorem concat_cpop {x : BitVec w} {b : Bool} :
64516451 have := cpopNat_le (x := x)
64526452 by_cases b <;> simp
64536453
6454- theorem cons_cpopNat_eq_concat_cpopNat {w : Nat} (x : BitVec w) :
6454+ theorem cons_cpopNat_eq_concat_cpopNat (x : BitVec w) :
64556455 (x.cons y).cpopNat = (x.concat y).cpopNat := by
64566456 rw [cpopNat_cons, concat_cpopNat]
64576457
6458- theorem cpop_cons_eq_cpop_concat {w : Nat} (x : BitVec w) :
6458+ theorem cpop_cons_eq_cpop_concat (x : BitVec w) :
64596459 (x.cons y).cpop v = (x.concat y).cpop v := by
64606460 simp [cpop, cons_cpopNat_eq_concat_cpopNat]
64616461
64626462@[simp]
6463- theorem reverse_cpopNat {w : Nat} (x : BitVec w) :
6463+ theorem reverse_cpopNat (x : BitVec w) :
64646464 x.reverse.cpopNat = x.cpopNat := by
64656465 induction w
64666466 case zero =>
@@ -6472,11 +6472,11 @@ theorem reverse_cpopNat {w : Nat} (x : BitVec w) :
64726472 rw [← cons_msb_setWidth (x := x), cpopNat_cons]
64736473
64746474@[simp]
6475- theorem reverse_cpop {w : Nat} (x : BitVec w) :
6475+ theorem reverse_cpop (x : BitVec w) :
64766476 x.reverse.cpop v = x.cpop v := by
64776477 simp [cpop]
64786478
6479- theorem cast_cpopNatRec_eq_cpopNatRec_of_eq {x : BitVec w} (p : w = v) :
6479+ theorem cast_cpopNatRec_eq_cpopNatRec_of_eq {x : BitVec w} (p : w = v) :
64806480 (x.cast p).cpopNatRec n = x.cpopNatRec n := by
64816481 congr
64826482 · omega
0 commit comments