@@ -3762,39 +3762,32 @@ open Internal.Raw Internal.Raw₀
37623762section BEq
37633763variable {m₁ m₂ : Raw α β} [LawfulBEq α] [∀ k, BEq (β k)]
37643764
3765- theorem Equiv.beq [∀ k, ReflBEq (β k)] (h₁ : m₁.WF) (h₂ : m₂.WF) : m₁ ~m m₂ → m₁ == m₂ := by
3765+ theorem Equiv.beq [∀ k, ReflBEq (β k)] (h₁ : m₁.WF) (h₂ : m₂.WF) (h : m₁ ~m m₂) : m₁ == m₂ := by
37663766 simp only [BEq.beq]
3767- simp_to_raw
3768- intro h
3769- exact Raw₀.Equiv.beq h₁ h₂ h
3767+ simp_to_raw using Raw₀.Equiv.beq
37703768
3771- theorem equiv_of_beq [∀ k, LawfulBEq (β k)] (h₁ : m₁.WF) (h₂ : m₂.WF) : beq m₁ m₂ = true → m₁ ~m m₂ := by
3769+ theorem equiv_of_beq [∀ k, LawfulBEq (β k)] (h₁ : m₁.WF) (h₂ : m₂.WF) (h : beq m₁ m₂ = true) : m₁ ~m m₂ := by
3770+ revert h
37723771 simp_to_raw using Raw₀.equiv_of_beq
37733772
3774- theorem Equiv.beq_congr {m₃ m₄ : Raw α β} (h₁ : m₁.WF) (h₂ : m₂.WF) (h₃ : m₃.WF) (h₄ : m₄.WF) :
3775- m₁ ~m m₃ → m₂ ~m m₄ → Raw.beq m₁ m₂ = Raw.beq m₃ m₄ := by
3776- simp_to_raw
3777- intro w1 w2
3778- exact Raw₀.Equiv.beq_congr h₁ h₂ h₃ h₄ w1 w2
3773+ theorem Equiv.beq_congr {m₃ m₄ : Raw α β} (h₁ : m₁.WF) (h₂ : m₂.WF) (h₃ : m₃.WF) (h₄ : m₄.WF) (w₁ : m₁ ~m m₃) (w₂ : m₂ ~m m₄) : Raw.beq m₁ m₂ = Raw.beq m₃ m₄ := by
3774+ simp_to_raw using Raw₀.Equiv.beq_congr
37793775
37803776end BEq
37813777
37823778section
3779+
37833780variable {β : Type v} {m₁ m₂ : Raw α (fun _ => β)}
37843781
3785- theorem Const.Equiv.beq [EquivBEq α] [LawfulHashable α] [BEq β] [ReflBEq β] (h₁ : m₁.WF) (h₂ : m₂.WF) : m₁ ~m m₂ → beq m₁ m₂ := by
3786- simp_to_raw
3787- intro h
3788- exact Raw₀.Const.Equiv.beq h₁ h₂ h
3782+ theorem Const.Equiv.beq [EquivBEq α] [LawfulHashable α] [BEq β] [ReflBEq β] (h₁ : m₁.WF) (h₂ : m₂.WF) (h : m₁ ~m m₂) : beq m₁ m₂ := by
3783+ simp_to_raw using Raw₀.Const.Equiv.beq
37893784
3790- theorem Const.equiv_of_beq [LawfulBEq α] [BEq β] [LawfulBEq β] (h₁ : m₁.WF) (h₂ : m₂.WF) : beq m₁ m₂ = true → m₁ ~m m₂ := by
3785+ theorem Const.equiv_of_beq [LawfulBEq α] [BEq β] [LawfulBEq β] (h₁ : m₁.WF) (h₂ : m₂.WF) (h : beq m₁ m₂ = true ) : m₁ ~m m₂ := by
3786+ revert h
37913787 simp_to_raw using Raw₀.Const.equiv_of_beq
37923788
3793- theorem Const.Equiv.beq_congr [EquivBEq α] [LawfulHashable α] [BEq β] {m₃ m₄ : Raw α (fun _ => β)} (h₁ : m₁.WF) (h₂ : m₂.WF) (h₃ : m₃.WF) (h₄ : m₄.WF) :
3794- m₁ ~m m₃ → m₂ ~m m₄ → Raw.Const.beq m₁ m₂ = Raw.Const.beq m₃ m₄ := by
3795- simp_to_raw
3796- intro w1 w2
3797- exact Raw₀.Const.Equiv.beq_congr h₁ h₂ h₃ h₄ w1 w2
3789+ theorem Const.Equiv.beq_congr [EquivBEq α] [LawfulHashable α] [BEq β] {m₃ m₄ : Raw α (fun _ => β)} (h₁ : m₁.WF) (h₂ : m₂.WF) (h₃ : m₃.WF) (h₄ : m₄.WF) (w₁ : m₁ ~m m₃) (w₂ : m₂ ~m m₄) : Raw.Const.beq m₁ m₂ = Raw.Const.beq m₃ m₄ := by
3790+ simp_to_raw using Raw₀.Const.Equiv.beq_congr
37983791
37993792end
38003793
0 commit comments