|
| 1 | +set_option linter.unusedVariables false |
| 2 | + |
| 3 | +opaque R : (n m : Int) → Type |
| 4 | + |
| 5 | +axiom mkR : Nat → R n m |
| 6 | + |
| 7 | +noncomputable def d : ∀ (n m : Int), R n m |
| 8 | + | .ofNat n, .ofNat m => mkR 0 |
| 9 | + | .negSucc n, .negSucc m => mkR 0 |
| 10 | + | .negSucc 0, .ofNat 0 => mkR 0 |
| 11 | + | .ofNat _, .negSucc _ => mkR 0 |
| 12 | + | .negSucc _, .ofNat _ => mkR 0 |
| 13 | + |
| 14 | +/-- |
| 15 | +error: unsolved goals |
| 16 | +case refine_1 |
| 17 | +⊢ ∀ (n m : Nat), ¬↑n + 1 = ↑m → mkR 0 = mkR 0 |
| 18 | +
|
| 19 | +case refine_2 |
| 20 | +⊢ ∀ (n m : Nat), ¬Int.negSucc n + 1 = Int.negSucc m → mkR 0 = mkR 0 |
| 21 | +
|
| 22 | +case refine_3 |
| 23 | +⊢ ¬0 = 0 → mkR 0 = mkR 0 |
| 24 | +
|
| 25 | +case refine_4 |
| 26 | +⊢ ∀ (a a_1 : Nat), ¬↑a + 1 = Int.negSucc a_1 → mkR 0 = mkR 0 |
| 27 | +
|
| 28 | +case refine_5 |
| 29 | +⊢ ∀ (a a_1 : Nat), (a = 0 → a_1 = 0 → False) → ¬Int.negSucc a + 1 = ↑a_1 → mkR 0 = mkR 0 |
| 30 | +-/ |
| 31 | +#guard_msgs in |
| 32 | +example : (n m : Int) → (hnm : n + 1 ≠ m) → d n m = mkR 0 := by |
| 33 | + refine d.fun_cases_unfolding (motive := fun n m r => (n + 1 ≠ m) → r = mkR 0) |
| 34 | + ?_ ?_ ?_ ?_ ?_ <;> dsimp |
| 35 | + |
| 36 | +/-- |
| 37 | +error: unsolved goals |
| 38 | +case case1 |
| 39 | +n✝ m✝ : Nat |
| 40 | +hnm : Int.ofNat n✝ + 1 ≠ Int.ofNat m✝ |
| 41 | +⊢ d (Int.ofNat n✝) (Int.ofNat m✝) = mkR 0 |
| 42 | +
|
| 43 | +case case2 |
| 44 | +n✝ m✝ : Nat |
| 45 | +hnm : Int.negSucc n✝ + 1 ≠ Int.negSucc m✝ |
| 46 | +⊢ d (Int.negSucc n✝) (Int.negSucc m✝) = mkR 0 |
| 47 | +
|
| 48 | +case case3 |
| 49 | +hnm : Int.negSucc 0 + 1 ≠ Int.ofNat 0 |
| 50 | +⊢ d (Int.negSucc 0) (Int.ofNat 0) = mkR 0 |
| 51 | +
|
| 52 | +case case4 |
| 53 | +a✝¹ a✝ : Nat |
| 54 | +hnm : Int.ofNat a✝¹ + 1 ≠ Int.negSucc a✝ |
| 55 | +⊢ d (Int.ofNat a✝¹) (Int.negSucc a✝) = mkR 0 |
| 56 | +
|
| 57 | +case case5 |
| 58 | +a✝¹ a✝ : Nat |
| 59 | +x✝ : a✝¹ = 0 → a✝ = 0 → False |
| 60 | +hnm : Int.negSucc a✝¹ + 1 ≠ Int.ofNat a✝ |
| 61 | +⊢ d (Int.negSucc a✝¹) (Int.ofNat a✝) = mkR 0 |
| 62 | +-/ |
| 63 | +#guard_msgs in |
| 64 | +example : (n m : Int) → (hnm : n + 1 ≠ m) → d n m = mkR 0 := by |
| 65 | + intros n m hnm |
| 66 | + fun_cases d |
| 67 | + |
| 68 | +-- set_option trace.Elab.induction true in |
| 69 | + |
| 70 | +/-- |
| 71 | +error: unsolved goals |
| 72 | +case case1 |
| 73 | +n✝ m✝ : Nat |
| 74 | +hnm : Int.ofNat n✝ + 1 ≠ Int.ofNat m✝ |
| 75 | +⊢ d (Int.ofNat n✝) (Int.ofNat m✝) = mkR 0 |
| 76 | +
|
| 77 | +case case2 |
| 78 | +n✝ m✝ : Nat |
| 79 | +hnm : Int.negSucc n✝ + 1 ≠ Int.negSucc m✝ |
| 80 | +⊢ d (Int.negSucc n✝) (Int.negSucc m✝) = mkR 0 |
| 81 | +
|
| 82 | +case case3 |
| 83 | +hnm : Int.negSucc 0 + 1 ≠ Int.ofNat 0 |
| 84 | +⊢ d (Int.negSucc 0) (Int.ofNat 0) = mkR 0 |
| 85 | +
|
| 86 | +case case4 |
| 87 | +a✝¹ a✝ : Nat |
| 88 | +hnm : Int.ofNat a✝¹ + 1 ≠ Int.negSucc a✝ |
| 89 | +⊢ d (Int.ofNat a✝¹) (Int.negSucc a✝) = mkR 0 |
| 90 | +
|
| 91 | +case case5 |
| 92 | +a✝¹ a✝ : Nat |
| 93 | +x✝ : a✝¹ = 0 → a✝ = 0 → False |
| 94 | +hnm : Int.negSucc a✝¹ + 1 ≠ Int.ofNat a✝ |
| 95 | +⊢ d (Int.negSucc a✝¹) (Int.ofNat a✝) = mkR 0 |
| 96 | +-/ |
| 97 | +#guard_msgs(pass trace, all) in |
| 98 | +example : (n m : Int) → (hnm : n + 1 ≠ m) → d n m = mkR 0 := by |
| 99 | + intros n m hnm |
| 100 | + cases n, m using d.fun_cases_unfolding |
| 101 | + |
| 102 | +/-- |
| 103 | +error: unsolved goals |
| 104 | +case case1 |
| 105 | +n✝ m✝ : Nat |
| 106 | +hnm : Int.ofNat n✝ + 1 ≠ Int.ofNat m✝ |
| 107 | +⊢ mkR 0 = mkR 0 |
| 108 | +
|
| 109 | +case case2 |
| 110 | +n✝ m✝ : Nat |
| 111 | +hnm : Int.negSucc n✝ + 1 ≠ Int.negSucc m✝ |
| 112 | +⊢ mkR 0 = mkR 0 |
| 113 | +
|
| 114 | +case case3 |
| 115 | +hnm : Int.negSucc 0 + 1 ≠ Int.ofNat 0 |
| 116 | +⊢ mkR 0 = mkR 0 |
| 117 | +
|
| 118 | +case case4 |
| 119 | +a✝¹ a✝ : Nat |
| 120 | +hnm : Int.ofNat a✝¹ + 1 ≠ Int.negSucc a✝ |
| 121 | +⊢ mkR 0 = mkR 0 |
| 122 | +
|
| 123 | +case case5 |
| 124 | +a✝¹ a✝ : Nat |
| 125 | +x✝ : a✝¹ = 0 → a✝ = 0 → False |
| 126 | +hnm : Int.negSucc a✝¹ + 1 ≠ Int.ofNat a✝ |
| 127 | +⊢ mkR 0 = mkR 0 |
| 128 | +-/ |
| 129 | +#guard_msgs(pass trace, all) in |
| 130 | +example : (n m : Int) → (hnm : n + 1 ≠ m) → d n m = mkR 0 := by |
| 131 | + intros n m hnm |
| 132 | + induction n, m using d.fun_cases_unfolding |
0 commit comments