@@ -87,7 +87,7 @@ theorem not_cons_lex_cons_iff [DecidableEq α] [DecidableRel r] {a b} {l₁ l₂
8787
8888theorem cons_le_cons_iff [LT α]
8989 [i₁ : Std.Asymm (· < · : α → α → Prop )]
90- [i₂ : Std.Antisymm (¬ · < · : α → α → Prop )]
90+ [i₂ : Std.Tricho ( · < · : α → α → Prop )]
9191 {a b} {l₁ l₂ : List α} :
9292 (a :: l₁) ≤ (b :: l₂) ↔ a < b ∨ a = b ∧ l₁ ≤ l₂ := by
9393 dsimp only [instLE, instLT, List.le, List.lt]
@@ -99,12 +99,12 @@ theorem cons_le_cons_iff [LT α]
9999 apply Decidable.byContradiction
100100 intro h₃
101101 apply h₂
102- exact i₂.antisymm _ _ h₁ h₃
102+ exact i₂.tricho _ _ h₁ h₃
103103 · if h₃ : a < b then
104104 exact .inl h₃
105105 else
106106 right
107- exact ⟨i₂.antisymm _ _ h₃ h₁, h₂⟩
107+ exact ⟨i₂.tricho _ _ h₃ h₁, h₂⟩
108108 · rintro (h | ⟨h₁, h₂⟩)
109109 · left
110110 exact ⟨i₁.asymm _ _ h, fun w => Irrefl.irrefl _ (w ▸ h)⟩
@@ -113,7 +113,7 @@ theorem cons_le_cons_iff [LT α]
113113
114114theorem not_lt_of_cons_le_cons [LT α]
115115 [i₁ : Std.Asymm (· < · : α → α → Prop )]
116- [i₂ : Std.Antisymm (¬ · < · : α → α → Prop )]
116+ [i₂ : Std.Tricho ( · < · : α → α → Prop )]
117117 {a b : α} {l₁ l₂ : List α} (h : a :: l₁ ≤ b :: l₂) : ¬ b < a := by
118118 rw [cons_le_cons_iff] at h
119119 rcases h with h | ⟨rfl, h⟩
@@ -127,7 +127,7 @@ theorem left_le_left_of_cons_le_cons [LT α] [LE α] [IsLinearOrder α]
127127theorem le_of_cons_le_cons [LT α]
128128 [i₀ : Std.Irrefl (· < · : α → α → Prop )]
129129 [i₁ : Std.Asymm (· < · : α → α → Prop )]
130- [i₂ : Std.Antisymm (¬ · < · : α → α → Prop )]
130+ [i₂ : Std.Tricho ( · < · : α → α → Prop )]
131131 {a} {l₁ l₂ : List α} (h : a :: l₁ ≤ a :: l₂) : l₁ ≤ l₂ := by
132132 rw [cons_le_cons_iff] at h
133133 rcases h with h | ⟨_, h⟩
@@ -201,7 +201,7 @@ protected theorem lt_of_le_of_lt [LT α] [LE α] [IsLinearOrder α] [LawfulOrder
201201@[deprecated List.lt_of_le_of_lt (since := "2025-08-01")]
202202protected theorem lt_of_le_of_lt' [LT α]
203203 [Std.Asymm (· < · : α → α → Prop )]
204- [Std.Antisymm (¬ · < · : α → α → Prop )]
204+ [Std.Tricho ( · < · : α → α → Prop )]
205205 [Trans (¬ · < · : α → α → Prop ) (¬ · < ·) (¬ · < ·)]
206206 {l₁ l₂ l₃ : List α} (h₁ : l₁ ≤ l₂) (h₂ : l₂ < l₃) : l₁ < l₃ :=
207207 letI : LE α := .ofLT α
@@ -215,7 +215,7 @@ protected theorem le_trans [LT α] [LE α] [IsLinearOrder α] [LawfulOrderLT α]
215215@[deprecated List.le_trans (since := "2025-08-01")]
216216protected theorem le_trans' [LT α]
217217 [Std.Asymm (· < · : α → α → Prop )]
218- [Std.Antisymm (¬ · < · : α → α → Prop )]
218+ [Std.Tricho ( · < · : α → α → Prop )]
219219 [Trans (¬ · < · : α → α → Prop ) (¬ · < ·) (¬ · < ·)]
220220 {l₁ l₂ l₃ : List α} (h₁ : l₁ ≤ l₂) (h₂ : l₂ ≤ l₃) : l₁ ≤ l₃ :=
221221 letI := LE.ofLT α
@@ -293,7 +293,7 @@ protected theorem le_of_lt [LT α]
293293
294294protected theorem le_iff_lt_or_eq [LT α]
295295 [Std.Irrefl (· < · : α → α → Prop )]
296- [Std.Antisymm (¬ · < · : α → α → Prop )]
296+ [Std.Tricho ( · < · : α → α → Prop )]
297297 [Std.Asymm (· < · : α → α → Prop )]
298298 {l₁ l₂ : List α} : l₁ ≤ l₂ ↔ l₁ < l₂ ∨ l₁ = l₂ := by
299299 constructor
@@ -479,7 +479,7 @@ protected theorem lt_iff_exists [LT α] {l₁ l₂ : List α} :
479479
480480protected theorem le_iff_exists [LT α]
481481 [Std.Asymm (· < · : α → α → Prop )]
482- [Std.Antisymm (¬ · < · : α → α → Prop )] {l₁ l₂ : List α} :
482+ [Std.Tricho ( · < · : α → α → Prop )] {l₁ l₂ : List α} :
483483 l₁ ≤ l₂ ↔
484484 (l₁ = l₂.take l₁.length) ∨
485485 (∃ (i : Nat) (h₁ : i < l₁.length) (h₂ : i < l₂.length),
@@ -492,7 +492,7 @@ protected theorem le_iff_exists [LT α]
492492 conv => lhs; simp +singlePass [exists_comm]
493493 · simpa using Std.Irrefl.irrefl
494494 · simpa using Std.Asymm.asymm
495- · simpa using Std.Antisymm.antisymm
495+ · simpa using Std.Tricho.tricho
496496
497497theorem append_left_lt [LT α] {l₁ l₂ l₃ : List α} (h : l₂ < l₃) :
498498 l₁ ++ l₂ < l₁ ++ l₃ := by
@@ -502,7 +502,7 @@ theorem append_left_lt [LT α] {l₁ l₂ l₃ : List α} (h : l₂ < l₃) :
502502
503503theorem append_left_le [LT α]
504504 [Std.Asymm (· < · : α → α → Prop )]
505- [Std.Antisymm (¬ · < · : α → α → Prop )]
505+ [Std.Tricho ( · < · : α → α → Prop )]
506506 {l₁ l₂ l₃ : List α} (h : l₂ ≤ l₃) :
507507 l₁ ++ l₂ ≤ l₁ ++ l₃ := by
508508 induction l₁ with
@@ -535,9 +535,9 @@ protected theorem map_lt [LT α] [LT β]
535535
536536protected theorem map_le [LT α] [LT β]
537537 [Std.Asymm (· < · : α → α → Prop )]
538- [Std.Antisymm (¬ · < · : α → α → Prop )]
538+ [Std.Tricho ( · < · : α → α → Prop )]
539539 [Std.Asymm (· < · : β → β → Prop )]
540- [Std.Antisymm (¬ · < · : β → β → Prop )]
540+ [Std.Tricho ( · < · : β → β → Prop )]
541541 {l₁ l₂ : List α} {f : α → β} (w : ∀ x y, x < y → f x < f y) (h : l₁ ≤ l₂) :
542542 map f l₁ ≤ map f l₂ := by
543543 rw [List.le_iff_exists] at h ⊢
0 commit comments