|
| 1 | +/- |
| 2 | +Copyright (c) 2025 Lean FRO, LLC. All rights reserved. |
| 3 | +Released under Apache 2.0 license as described in the file LICENSE. |
| 4 | +Authors: Paul Reichert |
| 5 | +-/ |
| 6 | +module |
| 7 | + |
| 8 | +prelude |
| 9 | +public import Std.Data.Iterators |
| 10 | +public import Std.Data.DHashMap.Iterator |
| 11 | +import all Std.Data.DHashMap.Basic |
| 12 | +import all Std.Data.DHashMap.Raw |
| 13 | +import all Std.Data.DHashMap.Iterator |
| 14 | +import Init.Data.Iterators.Lemmas.Combinators |
| 15 | +import Std.Data.DHashMap.Internal.WF |
| 16 | +import all Std.Data.DHashMap.Internal.Defs |
| 17 | +import Std.Data.DHashMap.RawLemmas |
| 18 | +import Std.Data.DHashMap.Lemmas |
| 19 | + |
| 20 | +namespace Std.DHashMap.Internal.AssocList |
| 21 | +open Std.Iterators |
| 22 | + |
| 23 | +@[simp] |
| 24 | +public theorem step_iter_nil {α : Type u} {β : α → Type v} : |
| 25 | + ((.nil : AssocList α β).iter).step = ⟨.done, rfl⟩ := by |
| 26 | + simp [Iter.step, IterM.step, Iterator.step, Iter.toIterM, iter] |
| 27 | + |
| 28 | +@[simp] |
| 29 | +public theorem step_iter_cons {α : Type u} {β : α → Type v} {k v} {l : AssocList α β} : |
| 30 | + ((AssocList.cons k v l).iter).step = ⟨.yield l.iter ⟨k, v⟩, rfl⟩ := by |
| 31 | + simp [Iter.step, IterM.step, Iterator.step, Iter.toIterM, iter, toIterM, IterM.toIter] |
| 32 | + |
| 33 | +@[simp] |
| 34 | +public theorem toList_iter {α : Type u} {β : α → Type v} {l : AssocList α β} : |
| 35 | + l.iter.toList = l.toList := by |
| 36 | + induction l |
| 37 | + · simp [Iter.toList_eq_match_step, step_iter_nil] |
| 38 | + · rw [Iter.toList_eq_match_step, step_iter_cons] |
| 39 | + simp [*] |
| 40 | + |
| 41 | +end Std.DHashMap.Internal.AssocList |
| 42 | + |
| 43 | +namespace Std.DHashMap.Raw |
| 44 | +open Std.Iterators |
| 45 | + |
| 46 | +section EntriesIter |
| 47 | + |
| 48 | +variable {α : Type u} {β : α → Type v} {m : Raw α β} |
| 49 | + |
| 50 | +@[simp] |
| 51 | +public theorem toList_iter : |
| 52 | + m.iter.toList = m.toList := by |
| 53 | + simp [Raw.iter, Iter.toList_flatMap, Iter.toList_map, Internal.toListModel, List.flatMap, |
| 54 | + Internal.Raw.toList_eq_toListModel] |
| 55 | + |
| 56 | +@[simp] |
| 57 | +public theorem toListRev_iter : |
| 58 | + m.iter.toListRev = m.toList.reverse := by |
| 59 | + simp [Iter.toListRev_eq, toList_iter] |
| 60 | + |
| 61 | +@[simp] |
| 62 | +public theorem toArray_iter [BEq α] [Hashable α] (h : m.WF) : |
| 63 | + m.iter.toArray = m.toArray := by |
| 64 | + simp [← Iter.toArray_toList, ← Raw.toArray_toList h, toList_iter] |
| 65 | + |
| 66 | +end EntriesIter |
| 67 | + |
| 68 | +section KeysIter |
| 69 | + |
| 70 | +variable {α : Type u} {β : α → Type u} {m : Raw α β} |
| 71 | + |
| 72 | +@[simp] |
| 73 | +public theorem toList_keysIter [BEq α] [Hashable α] [EquivBEq α] [LawfulHashable α] (h : m.WF) : |
| 74 | + m.keysIter.toList = m.keys := by |
| 75 | + simp [keysIter, ← map_fst_toList_eq_keys h, toList_iter] |
| 76 | + |
| 77 | +@[simp] |
| 78 | +public theorem toListRev_keysIter [BEq α] [Hashable α] [EquivBEq α] [LawfulHashable α] (h : m.WF) : |
| 79 | + m.keysIter.toListRev = m.keys.reverse := by |
| 80 | + simp [Iter.toListRev_eq, toList_keysIter h] |
| 81 | + |
| 82 | +@[simp] |
| 83 | +public theorem toArray_keysIter [BEq α] [Hashable α] [EquivBEq α] [LawfulHashable α] (h : m.WF) : |
| 84 | + m.keysIter.toArray = m.keysArray := by |
| 85 | + simp [← Iter.toArray_toList, ← Raw.toArray_keys h, toList_keysIter h] |
| 86 | + |
| 87 | +end KeysIter |
| 88 | + |
| 89 | +section ValuesIter |
| 90 | + |
| 91 | +variable {α β : Type u} {m : Raw α (fun _ => β)} |
| 92 | + |
| 93 | +@[simp] |
| 94 | +public theorem toList_valuesIter_eq_toList_map_snd : |
| 95 | + m.valuesIter.toList = m.toList.map Sigma.snd := by |
| 96 | + simp [valuesIter, toList_iter] |
| 97 | + |
| 98 | +@[simp] |
| 99 | +public theorem toListRev_valuesIter : |
| 100 | + m.valuesIter.toListRev = (m.toList.map Sigma.snd).reverse := by |
| 101 | + simp [Iter.toListRev_eq, toList_valuesIter_eq_toList_map_snd] |
| 102 | + |
| 103 | +@[simp] |
| 104 | +public theorem toArray_valuesIter : |
| 105 | + m.valuesIter.toArray = (m.toList.map Sigma.snd).toArray := by |
| 106 | + simp [← Iter.toArray_toList, toList_valuesIter_eq_toList_map_snd] |
| 107 | + |
| 108 | +end ValuesIter |
| 109 | + |
| 110 | +end Std.DHashMap.Raw |
| 111 | + |
| 112 | +namespace Std.DHashMap |
| 113 | +open Std.Iterators |
| 114 | + |
| 115 | +section EntriesIter |
| 116 | + |
| 117 | +variable {α : Type u} {β : α → Type v} [BEq α] [Hashable α] {m : DHashMap α β} |
| 118 | + |
| 119 | +theorem toList_inner : |
| 120 | + m.inner.toList = m.toList := |
| 121 | + rfl |
| 122 | + |
| 123 | +@[simp] |
| 124 | +public theorem toList_iter : |
| 125 | + m.iter.toList = m.toList := by |
| 126 | + simp [iter, Raw.toList_iter, toList_inner] |
| 127 | + |
| 128 | +@[simp] |
| 129 | +public theorem toListRev_iter : |
| 130 | + m.iter.toListRev = m.toList.reverse := by |
| 131 | + simp [Iter.toListRev_eq, toList_iter] |
| 132 | + |
| 133 | +@[simp] |
| 134 | +public theorem toArray_iter : |
| 135 | + m.iter.toArray = m.toArray := by |
| 136 | + simp [← Iter.toArray_toList, ← toArray_toList, toList_iter] |
| 137 | + |
| 138 | +end EntriesIter |
| 139 | + |
| 140 | +section KeysIter |
| 141 | + |
| 142 | +variable {α : Type u} {β : α → Type u} [BEq α] [Hashable α] {m : DHashMap α β} |
| 143 | + |
| 144 | +theorem keys_inner : |
| 145 | + m.inner.keys = m.keys := |
| 146 | + rfl |
| 147 | + |
| 148 | +@[simp] |
| 149 | +public theorem toList_keysIter [EquivBEq α] [LawfulHashable α] : |
| 150 | + m.keysIter.toList = m.keys := by |
| 151 | + simp [keysIter, Raw.toList_keysIter m.wf, keys_inner] |
| 152 | + |
| 153 | +@[simp] |
| 154 | +public theorem toListRev_keysIter [EquivBEq α] [LawfulHashable α] : |
| 155 | + m.keysIter.toListRev = m.keys.reverse := by |
| 156 | + simp [Iter.toListRev_eq, toList_keysIter] |
| 157 | + |
| 158 | +@[simp] |
| 159 | +public theorem toArray_keysIter [EquivBEq α] [LawfulHashable α] : |
| 160 | + m.keysIter.toArray = m.keysArray := by |
| 161 | + simp [← Iter.toArray_toList, ← toArray_keys, toList_keysIter] |
| 162 | + |
| 163 | +end KeysIter |
| 164 | + |
| 165 | +section ValuesIter |
| 166 | + |
| 167 | +variable {α : Type u} {β : Type u} [BEq α] [Hashable α] {m : DHashMap α (fun _ => β)} |
| 168 | + |
| 169 | +@[simp] |
| 170 | +public theorem toList_valuesIter_eq_toList_map_snd : |
| 171 | + m.valuesIter.toList = m.toList.map Sigma.snd := by |
| 172 | + simp [valuesIter, toList_iter] |
| 173 | + |
| 174 | +@[simp] |
| 175 | +public theorem toListRev_valuesIter : |
| 176 | + m.valuesIter.toListRev = (m.toList.map Sigma.snd).reverse := by |
| 177 | + simp [Iter.toListRev_eq, toList_valuesIter_eq_toList_map_snd] |
| 178 | + |
| 179 | +@[simp] |
| 180 | +public theorem toArray_valuesIter : |
| 181 | + m.valuesIter.toArray = (m.toList.map Sigma.snd).toArray := by |
| 182 | + simp [← Iter.toArray_toList, toList_valuesIter_eq_toList_map_snd] |
| 183 | + |
| 184 | +end ValuesIter |
| 185 | + |
| 186 | +end Std.DHashMap |
0 commit comments