@@ -512,23 +512,6 @@ public theorem Zipper.map_iterOfTree_eq_tree_toList_map (t : Impl α β) :
512512 rw [@toList_iter α β (prependMap t .done)]
513513 simp [Zipper.toList_prependMap_eq_append, toList]
514514
515- def Zipper.instProductivenessRelation : ProductivenessRelation (Zipper α β) Id where
516- rel x x' := x.1 .size < x'.1 .size
517- wf := by
518- apply InvImage.wf
519- exact Nat.lt_wfRel.wf
520- subrelation {it it'} h := by
521- simp [IterM.IsPlausibleSkipSuccessorOf, IterM.IsPlausibleStep, Iterator.IsPlausibleStep] at h
522- have := @Zipper.step_eq_match α β ⟨it.1 ⟩
523- simp [IterM.step, Iterator.step] at this
524- injections val_eq
525- rw [h] at val_eq
526- split at val_eq <;> contradiction
527-
528- @[no_expose]
529- public instance instProductive : Productive (Zipper α β) Id :=
530- .of_productivenessRelation Zipper.instProductivenessRelation
531-
532515theorem Zipper.val_step_map_Zipper_eq_match {α β γ} {f : (a : α) × β a → γ}
533516 {it : Iter (α := Zipper α β) (Sigma β)} :
534517 (it.map f).step.val =
@@ -699,26 +682,6 @@ public theorem toList_eq_takeWhile {α β} [Ord α] [TransOrd α] {z : Zipper α
699682 apply toList_eq_takeWhile_list
700683 exact z_ord
701684
702- def instProductivenessRelation [Ord α] : ProductivenessRelation (RxcIterator α β) Id where
703- rel t' t := t'.internalState.iter.size < t.internalState.iter.size
704- wf := by
705- apply InvImage.wf
706- exact Nat.lt_wfRel.wf
707- subrelation {it it'} h := by
708- simp [IterM.IsPlausibleSkipSuccessorOf, IterM.IsPlausibleStep, Iterator.IsPlausibleStep] at h
709- have := @step_rxcIterator_eq_match α β _ ⟨it.1 ⟩
710- simp [IterM.step, Iterator.step] at this
711- injections val_eq
712- rw [h] at val_eq
713- split at val_eq
714- case h_1 => contradiction
715- case h_2 =>
716- split at val_eq <;> contradiction
717-
718- @[no_expose]
719- public instance RxcIterator.instProductive [Ord α] : Productive (RxcIterator α β) Id :=
720- .of_productivenessRelation instProductivenessRelation
721-
722685end Rxc
723686
724687section Rxo
0 commit comments