|
| 1 | +set_option warn.sorry false |
| 2 | + |
| 3 | + |
| 4 | +inductive Ty where |
| 5 | + | unit : Ty |
| 6 | + | arrow (t₁ t₂ : Ty) : Ty |
| 7 | + |
| 8 | +def Env (n : Nat) := Fin n → Ty |
| 9 | + |
| 10 | +def Env.add (Γ : Env n) (t : Ty) : Env (n + 1) := |
| 11 | + Fin.cases t Γ |
| 12 | + |
| 13 | +inductive Term : Env n → Ty → Type where |
| 14 | + | var (i : Fin n) : Term Γ (Γ i) |
| 15 | + | app (e₁ : Term Γ (.arrow t₁ t₂)) (e₂ : Term Γ t₁) : Term Γ t₂ |
| 16 | + | lam (e : Term (Γ.add t₁) t₂) : Term Γ (.arrow t₁ t₂) |
| 17 | + |
| 18 | +def Subst (Γ : Env n) (Δ : Env m) := (i : Fin n) → Term Δ (Γ i) |
| 19 | + |
| 20 | +def Subst.id {Γ : Env n} : Subst Γ Γ := |
| 21 | + fun i => .var i |
| 22 | + |
| 23 | +def Subst.shift {Γ : Env n} : Subst Γ (Γ.add t) := |
| 24 | + fun i => .var i.succ |
| 25 | + |
| 26 | +def IsVar : Term Γ t → Bool |
| 27 | + | .var _ => true |
| 28 | + | .app _ _ => false |
| 29 | + | .lam _ => false |
| 30 | + |
| 31 | +attribute [simp] IsVar.eq_1 IsVar.eq_2 IsVar.eq_3 |
| 32 | + |
| 33 | +def IsRenaming (σ : Subst Γ Δ) : Bool := ∀ i, IsVar (σ i) |
| 34 | + |
| 35 | +set_option trace.Meta.FunInd true |
| 36 | + |
| 37 | +def Term.subst' (e : Term Γ t) (σ : Subst Γ Δ) : |
| 38 | + {r : Term Δ t // IsVar e → IsRenaming σ → IsVar r } := |
| 39 | + match e with |
| 40 | + | .var i => ⟨σ i, by sorry⟩ |
| 41 | + | .app e₁ e₂ => ⟨.app (e₁.subst' σ).val (e₂.subst' σ).val, by sorry⟩ |
| 42 | + | .lam e₁ => |
| 43 | + let r := .lam (e₁.subst' (Fin.cases (.var 0) (fun i => ((σ i).subst' .shift).1))).1 |
| 44 | + ⟨r, by sorry⟩ |
| 45 | +termination_by (if IsVar e then 0 else 1, if IsRenaming σ then 0 else 1, sizeOf e) |
| 46 | +decreasing_by |
| 47 | + · sorry |
| 48 | + · sorry |
| 49 | + · sorry |
| 50 | + · sorry |
| 51 | + · simp [*] |
| 52 | + apply Prod.Lex.right' |
| 53 | + · grind |
| 54 | + apply Prod.Lex.right' |
| 55 | + · sorry |
| 56 | + · sorry |
| 57 | + |
| 58 | +/-- |
| 59 | +error: Failed to realize constant Term.subst'.induct: |
| 60 | + Cannot derive functional induction principle (please report this issue) |
| 61 | + Internal error in `foldAndCollect`: Cannot reduce application of `fun n Γ n_1 Δ σ t₂ t₁ e x => |
| 62 | + Classical.byContradiction |
| 63 | + (Lean.Grind.intro_with_eq (¬(if IsVar e = true then 0 else 1) ≤ 1) (2 ≤ if IsVar e = true then 0 else 1) False |
| 64 | + (Nat.not_le_eq (if IsVar e = true then 0 else 1) 1) fun h => |
| 65 | + Or.casesOn (Lean.Grind.em (IsVar e = true)) |
| 66 | + (fun h_1 => |
| 67 | + id |
| 68 | + (Lean.Grind.Nat.unsat_le_lo (if IsVar e = true then 0 else 1) 0 2 Lean.Grind.rfl_true |
| 69 | + (Lean.Grind.Nat.le_of_eq_1 (if IsVar e = true then 0 else 1) 0 (ite_cond_eq_true 0 1 (eq_true h_1))) |
| 70 | + h)) |
| 71 | + fun h_1 => |
| 72 | + id |
| 73 | + (Lean.Grind.Nat.unsat_le_lo (if IsVar e = true then 0 else 1) 1 1 Lean.Grind.rfl_true |
| 74 | + (Lean.Grind.Nat.le_of_eq_1 (if IsVar e = true then 0 else 1) 1 (ite_cond_eq_false 0 1 (eq_false h_1))) |
| 75 | + (Lean.Grind.Nat.ro_lo_2 1 0 (if IsVar e = true then 0 else 1) 1 2 Lean.Grind.rfl_true (Nat.le_refl 1) |
| 76 | + h)))` in: |
| 77 | + (fun n Γ n_1 Δ σ t₂ t₁ e x => |
| 78 | + Classical.byContradiction |
| 79 | + (Lean.Grind.intro_with_eq (¬(if IsVar e = true then 0 else 1) ≤ 1) (2 ≤ if IsVar e = true then 0 else 1) |
| 80 | + False (Nat.not_le_eq (if IsVar e = true then 0 else 1) 1) fun h => |
| 81 | + Or.casesOn (Lean.Grind.em (IsVar e = true)) |
| 82 | + (fun h_1 => |
| 83 | + id |
| 84 | + (Lean.Grind.Nat.unsat_le_lo (if IsVar e = true then 0 else 1) 0 2 Lean.Grind.rfl_true |
| 85 | + (Lean.Grind.Nat.le_of_eq_1 (if IsVar e = true then 0 else 1) 0 |
| 86 | + (ite_cond_eq_true 0 1 (eq_true h_1))) |
| 87 | + h)) |
| 88 | + fun h_1 => |
| 89 | + id |
| 90 | + (Lean.Grind.Nat.unsat_le_lo (if IsVar e = true then 0 else 1) 1 1 Lean.Grind.rfl_true |
| 91 | + (Lean.Grind.Nat.le_of_eq_1 (if IsVar e = true then 0 else 1) 1 |
| 92 | + (ite_cond_eq_false 0 1 (eq_false h_1))) |
| 93 | + (Lean.Grind.Nat.ro_lo_2 1 0 (if IsVar e = true then 0 else 1) 1 2 Lean.Grind.rfl_true |
| 94 | + (Nat.le_refl 1) h)))) |
| 95 | + n✝² Γ n✝ Δ σ t₂✝ t₁✝ e✝ x✝¹ |
| 96 | +--- |
| 97 | +error: Unknown constant `Term.subst'.induct` |
| 98 | +-/ |
| 99 | +#guard_msgs(pass trace, all) in |
| 100 | +#print Term.subst'.induct |
0 commit comments