@@ -66,14 +66,8 @@ theorem ne_false_iff : {b : Bool} → b ≠ false ↔ b = true := by decide
6666
6767theorem eq_iff_iff {a b : Bool} : a = b ↔ (a ↔ b) := by cases b <;> simp
6868
69- @[simp] theorem decide_eq_true {b : Bool} : decide (b = true ) = b := rfl
70- @[simp] theorem decide_eq_false {b : Bool} : decide (b = false ) = !b := rfl
71-
72- /-- Generalized variant of `decide_eq_true` that can't be used in `dsimp`. -/
73- @[simp mid] theorem decide_eq_true' {b : Bool} [Decidable (b = true )] : decide (b = true ) = b := by cases b <;> simp
74-
75- /-- Generalized variant of `decide_eq_false` that can't be used in `dsimp`. -/
76- @[simp mid] theorem decide_eq_false' {b : Bool} [Decidable (b = false )] : decide (b = false ) = !b := by cases b <;> simp
69+ @[simp] theorem decide_eq_true {b : Bool} [Decidable (b = true )] : decide (b = true ) = b := by cases b <;> simp
70+ @[simp] theorem decide_eq_false {b : Bool} [Decidable (b = false )] : decide (b = false ) = !b := by cases b <;> simp
7771
7872theorem decide_true_eq {b : Bool} [Decidable (true = b)] : decide (true = b) = b := by cases b <;> simp
7973theorem decide_false_eq {b : Bool} [Decidable (false = b)] : decide (false = b) = !b := by cases b <;> simp
@@ -647,29 +641,17 @@ theorem apply_cond (f : α → β) {b : Bool} {a a' : α} :
647641
648642/-! # decidability -/
649643
650- protected theorem decide_coe (b : Bool) [Decidable (b = true )] : decide (b = true ) = b := decide_eq_true'
651-
652- @[simp] theorem decide_and (p q : Prop ) [dp : Decidable p] [dq : Decidable q] :
653- decide (p ∧ q) = (p && q) := rfl
644+ protected theorem decide_coe (b : Bool) [Decidable (b = true )] : decide (b = true ) = b := decide_eq_true
654645
655- /-- Generalized variant of `decide_and` that can't be used in `dsimp`. -/
656- @[simp mid] theorem decide_and' (p q : Prop ) [dpq : Decidable (p ∧ q)] [dp : Decidable p] [dq : Decidable q] :
646+ @[simp] theorem decide_and (p q : Prop ) [dpq : Decidable (p ∧ q)] [dp : Decidable p] [dq : Decidable q] :
657647 decide (p ∧ q) = (p && q) := by
658648 cases dp with | _ p => simp [p]
659649
660- @[simp] theorem decide_or (p q : Prop ) [dp : Decidable p] [dq : Decidable q] :
661- decide (p ∨ q) = (p || q) := rfl
662-
663- /-- Generalized variant of `decide_or` that can't be used in `dsimp`. -/
664- @[simp mid] theorem decide_or' (p q : Prop ) [dpq : Decidable (p ∨ q)] [dp : Decidable p] [dq : Decidable q] :
650+ @[simp] theorem decide_or (p q : Prop ) [dpq : Decidable (p ∨ q)] [dp : Decidable p] [dq : Decidable q] :
665651 decide (p ∨ q) = (p || q) := by
666652 cases dp with | _ p => simp [p]
667653
668- @[simp] theorem decide_iff_dist (p q : Prop ) [dp : Decidable p] [dq : Decidable q] :
669- decide (p ↔ q) = (decide p == decide q) := rfl
670-
671- /-- Generalized variant of `decide_iff_dist` that can't be used in `dsimp`. -/
672- @[simp mid] theorem decide_iff_dist' (p q : Prop ) [dpq : Decidable (p ↔ q)] [dp : Decidable p] [dq : Decidable q] :
654+ @[simp] theorem decide_iff_dist (p q : Prop ) [dpq : Decidable (p ↔ q)] [dp : Decidable p] [dq : Decidable q] :
673655 decide (p ↔ q) = (decide p == decide q) := by
674656 cases dp with | _ p => simp [p]
675657
0 commit comments