Skip to content

Commit 966e61f

Browse files
committed
cleanup
1 parent 6d2a480 commit 966e61f

File tree

3 files changed

+9
-29
lines changed

3 files changed

+9
-29
lines changed

src/Init/Core.lean

Lines changed: 2 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -1073,14 +1073,12 @@ theorem Exists.elim {α : Sort u} {p : α → Prop} {b : Prop}
10731073

10741074
/-! # Decidable -/
10751075

1076-
/-- Generalized variant of `decide_true` that can't be used in `dsimp`. -/
1077-
@[simp mid] theorem decide_true' (h : Decidable True) : @decide True h = true :=
1076+
@[simp] theorem decide_true (h : Decidable True) : @decide True h = true :=
10781077
match h with
10791078
| isTrue _ => rfl
10801079
| isFalse h => False.elim <| h ⟨⟩
10811080

1082-
/-- Generalized variant of `decide_false` that can't be used in `dsimp`. -/
1083-
@[simp mid] theorem decide_false' (h : Decidable False) : @decide False h = false :=
1081+
@[simp] theorem decide_false (h : Decidable False) : @decide False h = false :=
10841082
match h with
10851083
| isFalse _ => rfl
10861084
| isTrue h => False.elim h

src/Init/Data/BitVec/Lemmas.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -504,7 +504,7 @@ theorem zero_iff_eq_false {x: BitVec w} :
504504
@[simp] theorem msb_zero : (0#w).msb = false := by simp [BitVec.msb, getMsbD]
505505

506506
@[simp] theorem msb_one : (1#w).msb = decide (w = 1) := by
507-
simp only [BitVec.msb, getMsbD_one, ← Bool.decide_and, decide_eq_decide]
507+
simp [BitVec.msb, getMsbD_one, ← Bool.decide_and]
508508
omega
509509

510510
theorem msb_eq_getLsbD_last (x : BitVec w) :

src/Init/Data/Bool.lean

Lines changed: 6 additions & 24 deletions
Original file line numberDiff line numberDiff line change
@@ -66,14 +66,8 @@ theorem ne_false_iff : {b : Bool} → b ≠ false ↔ b = true := by decide
6666

6767
theorem eq_iff_iff {a b : Bool} : a = b ↔ (a ↔ b) := by cases b <;> simp
6868

69-
@[simp] theorem decide_eq_true {b : Bool} : decide (b = true) = b := rfl
70-
@[simp] theorem decide_eq_false {b : Bool} : decide (b = false) = !b := rfl
71-
72-
/-- Generalized variant of `decide_eq_true` that can't be used in `dsimp`. -/
73-
@[simp mid] theorem decide_eq_true' {b : Bool} [Decidable (b = true)] : decide (b = true) = b := by cases b <;> simp
74-
75-
/-- Generalized variant of `decide_eq_false` that can't be used in `dsimp`. -/
76-
@[simp mid] theorem decide_eq_false' {b : Bool} [Decidable (b = false)] : decide (b = false) = !b := by cases b <;> simp
69+
@[simp] theorem decide_eq_true {b : Bool} [Decidable (b = true)] : decide (b = true) = b := by cases b <;> simp
70+
@[simp] theorem decide_eq_false {b : Bool} [Decidable (b = false)] : decide (b = false) = !b := by cases b <;> simp
7771

7872
theorem decide_true_eq {b : Bool} [Decidable (true = b)] : decide (true = b) = b := by cases b <;> simp
7973
theorem decide_false_eq {b : Bool} [Decidable (false = b)] : decide (false = b) = !b := by cases b <;> simp
@@ -647,29 +641,17 @@ theorem apply_cond (f : α → β) {b : Bool} {a a' : α} :
647641

648642
/-! # decidability -/
649643

650-
protected theorem decide_coe (b : Bool) [Decidable (b = true)] : decide (b = true) = b := decide_eq_true'
651-
652-
@[simp] theorem decide_and (p q : Prop) [dp : Decidable p] [dq : Decidable q] :
653-
decide (p ∧ q) = (p && q) := rfl
644+
protected theorem decide_coe (b : Bool) [Decidable (b = true)] : decide (b = true) = b := decide_eq_true
654645

655-
/-- Generalized variant of `decide_and` that can't be used in `dsimp`. -/
656-
@[simp mid] theorem decide_and' (p q : Prop) [dpq : Decidable (p ∧ q)] [dp : Decidable p] [dq : Decidable q] :
646+
@[simp] theorem decide_and (p q : Prop) [dpq : Decidable (p ∧ q)] [dp : Decidable p] [dq : Decidable q] :
657647
decide (p ∧ q) = (p && q) := by
658648
cases dp with | _ p => simp [p]
659649

660-
@[simp] theorem decide_or (p q : Prop) [dp : Decidable p] [dq : Decidable q] :
661-
decide (p ∨ q) = (p || q) := rfl
662-
663-
/-- Generalized variant of `decide_or` that can't be used in `dsimp`. -/
664-
@[simp mid] theorem decide_or' (p q : Prop) [dpq : Decidable (p ∨ q)] [dp : Decidable p] [dq : Decidable q] :
650+
@[simp] theorem decide_or (p q : Prop) [dpq : Decidable (p ∨ q)] [dp : Decidable p] [dq : Decidable q] :
665651
decide (p ∨ q) = (p || q) := by
666652
cases dp with | _ p => simp [p]
667653

668-
@[simp] theorem decide_iff_dist (p q : Prop) [dp : Decidable p] [dq : Decidable q] :
669-
decide (p ↔ q) = (decide p == decide q) := rfl
670-
671-
/-- Generalized variant of `decide_iff_dist` that can't be used in `dsimp`. -/
672-
@[simp mid] theorem decide_iff_dist' (p q : Prop) [dpq : Decidable (p ↔ q)] [dp : Decidable p] [dq : Decidable q] :
654+
@[simp] theorem decide_iff_dist (p q : Prop) [dpq : Decidable (p ↔ q)] [dp : Decidable p] [dq : Decidable q] :
673655
decide (p ↔ q) = (decide p == decide q) := by
674656
cases dp with | _ p => simp [p]
675657

0 commit comments

Comments
 (0)