You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
theoremle_of_min_eq [Ord α] [TransOrd α] [LE α] [Min α] [Std.LawfulOrderOrd α] [Std.LawfulOrderMin α] [Std.LawfulOrderLeftLeaningMin α] (a b : α) (h1 : min a b = a) (h2 : a ≠ b) : a ≤ b := by
8253
+
theoremStd.LawfulOrderLeftLeaningMin.le_of_min_eq [LE α] [Min α] [Std.LawfulOrderLeftLeaningMin α] (a b : α) (h1 : min a b = a) (h2 : a ≠ b) : a ≤ b := by
8254
8254
apply Classical.byContradiction
8255
8255
intro hyp
8256
8256
rw [LawfulOrderLeftLeaningMin.min_eq_right a b hyp] at h1
8257
8257
rw [eq_comm] at h1
8258
8258
exact h2 h1
8259
8259
8260
-
theoremle_of_min_eq2 [Ord α] [TransOrd α] [LE α] [Min α] [Std.LawfulOrderOrd α] [Std.LawfulOrderMin α] [Std.LawfulOrderLeftLeaningMin α] (a b : α) (h1 : min a b = b) (h2 : a ≠ b) : ¬ a ≤ b := by
8260
+
theoremStd.LawfulOrderLeftLeaningMin.not_le_of_min_eq [LE α] [Min α] [Std.LawfulOrderLeftLeaningMin α] (a b : α) (h1 : min a b = b) (h2 : a ≠ b) : ¬ a ≤ b := by
8261
8261
intro hyp
8262
8262
rw [LawfulOrderLeftLeaningMin.min_eq_left a b hyp] at h1
8263
8263
exact h2 h1
8264
8264
8265
-
theoremtrans_lemma [Ord α] [TransOrd α] [LE α] [Std.LawfulOrderOrd α] {a b c : α} : a ≤ b → b ≤ c → a ≤ c := by
8265
+
theoremStd.LawfulOrderOrd.le_trans [Ord α] [TransOrd α] [LE α] [Std.LawfulOrderOrd α] {a b c : α} : a ≤ b → b ≤ c → a ≤ c := by
8266
8266
intro h1 h2
8267
8267
exact (LawfulOrderOrd.isLE_compare a c).1 <| TransOrd.isLE_trans ((LawfulOrderOrd.isLE_compare a b).2 h1) ((LawfulOrderOrd.isLE_compare b c).2 h2)
8268
8268
8269
-
theoremtotal [Ord α] [OrientedOrd α] [LE α] [Std.LawfulOrderOrd α] (a b : α) : a ≤ b ∨ b ≤ a := by
8269
+
theoremStd.LawfulOrderOrd.le_total [Ord α] [OrientedOrd α] [LE α] [Std.LawfulOrderOrd α] (a b : α) : a ≤ b ∨ b ≤ a := by
8270
8270
rw [← LawfulOrderOrd.isLE_compare a b, ← LawfulOrderOrd.isLE_compare b a]
have w1 := Std.LawfulOrderLeftLeaningMin.not_le_of_min_eq a b h1 hab
8374
+
have w2 := Std.LawfulOrderLeftLeaningMin.not_le_of_min_eq b c h2 hbc
8375
+
have w3 := Std.LawfulOrderLeftLeaningMin.le_of_min_eq a c h3
8376
8376
apply Classical.byContradiction
8377
8377
intro hn
8378
8378
specialize w3 (Ne.symm hn)
8379
-
have v1 := total a b
8380
-
have v2 := total b c
8379
+
have v1 := Std.LawfulOrderOrd.le_total a b
8380
+
have v2 := Std.LawfulOrderOrd.le_total b c
8381
8381
simp [w1] at v1
8382
8382
simp [w2] at v2
8383
8383
have a_leq_b := (LawfulOrderOrd.isLE_compare a b).1 <| TransOrd.isLE_trans ((LawfulOrderOrd.isLE_compare a c).2 w3) ((LawfulOrderOrd.isLE_compare c b).2 v2)
0 commit comments