@@ -254,6 +254,7 @@ private def processNewNatEq (a b : Expr) : GoalM Unit := do
254254
255255@[export lean_process_cutsat_eq]
256256def processNewEqImpl (a b : Expr) : GoalM Unit := do
257+ unless (← getConfig).cutsat do return ()
257258 match (← foreignTerm? a), (← foreignTerm? b) with
258259 | none, none => processNewIntEq a b
259260 | some .nat, some .nat => processNewNatEq a b
@@ -281,6 +282,7 @@ private def processNewNatDiseq (a b : Expr) : GoalM Unit := do
281282
282283@[export lean_process_cutsat_diseq]
283284def processNewDiseqImpl (a b : Expr) : GoalM Unit := do
285+ unless (← getConfig).cutsat do return ()
284286 match (← foreignTerm? a), (← foreignTermOrLit? b) with
285287 | none, none => processNewIntDiseq a b
286288 | some .nat, some .nat => processNewNatDiseq a b
@@ -404,6 +406,7 @@ Internalizes an integer (and `Nat`) expression. Here are the different cases tha
404406 back to the congruence closure module. Example: we have `f 5`, `f x`, `x - y = 3`, `y = 2`.
405407 -/
406408def internalize (e : Expr) (parent? : Option Expr) : GoalM Unit := do
409+ unless (← getConfig).cutsat do return ()
407410 let some (k, type) := getKindAndType? e | return ()
408411 if isForbiddenParent parent? k then return ()
409412 trace[grind.debug.cutsat.internalize] "{e} : {type}"
0 commit comments