@@ -31,11 +31,11 @@ public instance (r : α → α → Prop) [Asymm r] : Antisymm r where
3131public instance (r : α → α → Prop ) [Total r] : Trichotomous r where
3232 trichotomous a b h h' := by simpa [h, h'] using Total.total (r := r) a b
3333
34- public theorem Trichotomous.rel_or_eq_or_rel_swap {r : α → α → Prop } [Trichotomous r] {a b} :
34+ public theorem Trichotomous.rel_or_eq_or_rel_swap {r : α → α → Prop } [i : Trichotomous r] {a b} :
3535 r a b ∨ a = b ∨ r b a := match Classical.em (r a b) with
3636 | .inl hab => .inl hab | .inr hab => match Classical.em (r b a) with
3737 | .inl hba => .inr <| .inr hba
38- | .inr hba => .inr <| .inl <| Trichotomous .trichotomous _ _ hab hba
38+ | .inr hba => .inr <| .inl <| i .trichotomous _ _ hab hba
3939
4040public theorem trichotomous_of_rel_or_eq_or_rel_swap {r : α → α → Prop }
4141 (h : ∀ {a b}, r a b ∨ a = b ∨ r b a) : Trichotomous r where
@@ -52,7 +52,7 @@ public theorem Total.of_not_swap {r : α → α → Prop} [Total r] {a b} (h :
5252
5353public theorem total_of_not_rel_swap_imp_rel {r : α → α → Prop } (h : ∀ {a b}, ¬ r a b → r b a) :
5454 Total r where
55- total a b := Classical.byCases (p := r a b) Or .inl (fun hab => Or .inr (h hab) )
55+ total a b := match Classical.em ( r a b) with | .inl hab => .inl hab | .inr hab => .inr (h hab)
5656
5757public theorem total_of_refl_of_trichotomous (r : α → α → Prop ) [Refl r] [Trichotomous r] :
5858 Total r where
@@ -63,13 +63,12 @@ public theorem asymm_of_irrefl_of_antisymm (r : α → α → Prop) [Irrefl r] [
6363 asymm a b h h' := Irrefl.irrefl _ (Antisymm.antisymm a b h h' ▸ h)
6464
6565public theorem Total.asymm_of_total_not {r : α → α → Prop } [i : Total (¬ r · ·)] : Asymm r where
66- asymm a b h := by cases i.total a b <;> trivial
66+ asymm a b h := ( i.total a b).resolve_left (· h)
6767
6868public theorem Asymm.total_not {r : α → α → Prop } [i : Asymm r] : Total (¬ r · ·) where
69- total a b := by
70- apply Classical.byCases (p := r a b) <;> intro hab
71- · exact Or.inr <| i.asymm a b hab
72- · exact Or.inl hab
69+ total a b := match Classical.em (r b a) with
70+ | .inl hba => .inl <| i.asymm b a hba
71+ | .inr hba => .inr hba
7372
7473public instance {α : Type u} [LE α] [IsPartialOrder α] :
7574 Antisymm (α := α) (· ≤ ·) where
0 commit comments