Skip to content

Commit bf5905f

Browse files
committed
deprecations
1 parent 73f6b10 commit bf5905f

File tree

2 files changed

+3
-3
lines changed

2 files changed

+3
-3
lines changed

src/Init/Data/Int/Lemmas.lean

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -17,7 +17,7 @@ open Nat
1717
/-! ## Definitions of basic functions -/
1818

1919
theorem subNatNat_of_sub_eq_zero {m n : Nat} (h : n - m = 0) : subNatNat m n = ↑(m - n) := by
20-
rw [subNatNat, h, ofNat_eq_coe]
20+
rw [subNatNat, h, ofNat_eq_natCast]
2121

2222
theorem subNatNat_of_sub_eq_succ {m n k : Nat} (h : n - m = succ k) : subNatNat m n = -[k+1] := by
2323
rw [subNatNat, h]
@@ -129,7 +129,7 @@ theorem subNatNat_elim (m n : Nat) (motive : Nat → Nat → Int → Prop)
129129

130130
theorem subNatNat_add_left : subNatNat (m + n) m = n := by
131131
unfold subNatNat
132-
rw [Nat.sub_eq_zero_of_le (Nat.le_add_right ..), Nat.add_sub_cancel_left, ofNat_eq_coe]
132+
rw [Nat.sub_eq_zero_of_le (Nat.le_add_right ..), Nat.add_sub_cancel_left, ofNat_eq_natCast]
133133

134134
theorem subNatNat_add_right : subNatNat m (m + n + 1) = negSucc n := by
135135
simp [subNatNat, Nat.add_assoc, Nat.add_sub_cancel_left]

src/Init/Data/Option/Lemmas.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1319,7 +1319,7 @@ theorem pfilter_congr {α : Type u} {o o' : Option α} (ho : o = o')
13191319

13201320
@[simp, grind =] theorem pfilter_some {α : Type _} {x : α} {p : (a : α) → some x = some a → Bool} :
13211321
(some x).pfilter p = if p x rfl then some x else none := by
1322-
simp only [pfilter, cond_eq_if]
1322+
simp only [pfilter, cond_eq_ite]
13231323

13241324
theorem isSome_pfilter_iff {α : Type _} {o : Option α} {p : (a : α) → o = some a → Bool} :
13251325
(o.pfilter p).isSome ↔ ∃ (a : α) (ha : o = some a), p a ha := by

0 commit comments

Comments
 (0)