File tree Expand file tree Collapse file tree 2 files changed +3
-3
lines changed
Expand file tree Collapse file tree 2 files changed +3
-3
lines changed Original file line number Diff line number Diff line change @@ -17,7 +17,7 @@ open Nat
1717/-! ## Definitions of basic functions -/
1818
1919theorem subNatNat_of_sub_eq_zero {m n : Nat} (h : n - m = 0 ) : subNatNat m n = ↑(m - n) := by
20- rw [subNatNat, h, ofNat_eq_coe ]
20+ rw [subNatNat, h, ofNat_eq_natCast ]
2121
2222theorem subNatNat_of_sub_eq_succ {m n k : Nat} (h : n - m = succ k) : subNatNat m n = -[k+1 ] := by
2323 rw [subNatNat, h]
@@ -129,7 +129,7 @@ theorem subNatNat_elim (m n : Nat) (motive : Nat → Nat → Int → Prop)
129129
130130theorem subNatNat_add_left : subNatNat (m + n) m = n := by
131131 unfold subNatNat
132- rw [Nat.sub_eq_zero_of_le (Nat.le_add_right ..), Nat.add_sub_cancel_left, ofNat_eq_coe ]
132+ rw [Nat.sub_eq_zero_of_le (Nat.le_add_right ..), Nat.add_sub_cancel_left, ofNat_eq_natCast ]
133133
134134theorem subNatNat_add_right : subNatNat m (m + n + 1 ) = negSucc n := by
135135 simp [subNatNat, Nat.add_assoc, Nat.add_sub_cancel_left]
Original file line number Diff line number Diff line change @@ -1319,7 +1319,7 @@ theorem pfilter_congr {α : Type u} {o o' : Option α} (ho : o = o')
13191319
13201320@[simp, grind =] theorem pfilter_some {α : Type _} {x : α} {p : (a : α) → some x = some a → Bool} :
13211321 (some x).pfilter p = if p x rfl then some x else none := by
1322- simp only [pfilter, cond_eq_if ]
1322+ simp only [pfilter, cond_eq_ite ]
13231323
13241324theorem isSome_pfilter_iff {α : Type _} {o : Option α} {p : (a : α) → o = some a → Bool} :
13251325 (o.pfilter p).isSome ↔ ∃ (a : α) (ha : o = some a), p a ha := by
You can’t perform that action at this time.
0 commit comments