@@ -27,7 +27,7 @@ def invAtPrec (x : Dyadic) (prec : Int) : Dyadic :=
2727/-- For a positive dyadic `x`, `invAtPrec x prec * x ≤ 1`. -/
2828theorem invAtPrec_mul_le_one {x : Dyadic} (hx : 0 < x) (prec : Int) :
2929 invAtPrec x prec * x ≤ 1 := by
30- rw [le_iff_toRat ]
30+ rw [← toRat_le_toRat_iff ]
3131 rw [toRat_mul]
3232 rw [show (1 : Dyadic).toRat = (1 : Rat) from rfl]
3333 unfold invAtPrec
@@ -39,19 +39,19 @@ theorem invAtPrec_mul_le_one {x : Dyadic} (hx : 0 < x) (prec : Int) :
3939 simp only
4040 have h_le : ((ofOdd n k hn).toRat.inv.toDyadic prec).toRat ≤ (ofOdd n k hn).toRat.inv := Rat.toRat_toDyadic_le
4141 have h_pos : 0 ≤ (ofOdd n k hn).toRat := by
42- rw [lt_iff_toRat , toRat_zero] at hx
42+ rw [← toRat_lt_toRat_iff , toRat_zero] at hx
4343 exact Rat.le_of_lt hx
4444 calc ((ofOdd n k hn).toRat.inv.toDyadic prec).toRat * (ofOdd n k hn).toRat
4545 ≤ (ofOdd n k hn).toRat.inv * (ofOdd n k hn).toRat := Rat.mul_le_mul_of_nonneg_right h_le h_pos
4646 _ = 1 := by
4747 apply Rat.inv_mul_cancel
48- rw [lt_iff_toRat , toRat_zero] at hx
48+ rw [← toRat_lt_toRat_iff , toRat_zero] at hx
4949 exact Rat.ne_of_gt hx
5050
5151/-- For a positive dyadic `x`, `1 < (invAtPrec x prec + 2^(-prec)) * x`. -/
5252theorem one_lt_invAtPrec_add_inc_mul {x : Dyadic} (hx : 0 < x) (prec : Int) :
5353 1 < (invAtPrec x prec + ofIntWithPrec 1 prec) * x := by
54- rw [lt_iff_toRat ]
54+ rw [← toRat_lt_toRat_iff ]
5555 rw [toRat_mul]
5656 rw [show (1 : Dyadic).toRat = (1 : Rat) from rfl]
5757 unfold invAtPrec
@@ -64,12 +64,12 @@ theorem one_lt_invAtPrec_add_inc_mul {x : Dyadic} (hx : 0 < x) (prec : Int) :
6464 have h_le : (ofOdd n k hn).toRat.inv < ((ofOdd n k hn).toRat.inv.toDyadic prec + ofIntWithPrec 1 prec).toRat :=
6565 Rat.lt_toRat_toDyadic_add
6666 have h_pos : 0 < (ofOdd n k hn).toRat := by
67- rwa [lt_iff_toRat , toRat_zero] at hx
67+ rwa [← toRat_lt_toRat_iff , toRat_zero] at hx
6868 calc
6969 1 = (ofOdd n k hn).toRat.inv * (ofOdd n k hn).toRat := by
7070 symm
7171 apply Rat.inv_mul_cancel
72- rw [lt_iff_toRat , toRat_zero] at hx
72+ rw [← toRat_lt_toRat_iff , toRat_zero] at hx
7373 exact Rat.ne_of_gt hx
7474 _ < ((ofOdd n k hn).toRat.inv.toDyadic prec + ofIntWithPrec 1 prec).toRat * (ofOdd n k hn).toRat :=
7575 Rat.mul_lt_mul_of_pos_right h_le h_pos
0 commit comments