@@ -3389,7 +3389,7 @@ theorem union!_insert_right_equiv_insert_union! [TransOrd α] {p : (a : α) ×
33893389 . wf_trivial
33903390 . exact h₂.balanced
33913391
3392- theorem union_equiv_congr_left {m₃ : Impl α β} [TransOrd α]
3392+ theorem Equiv.union_left {m₃ : Impl α β} [TransOrd α]
33933393 (h₁ : m₁.WF) (h₂ : m₂.WF) (h₃ : m₃.WF) (equiv : m₁.Equiv m₂) :
33943394 (m₁.union m₃ h₁.balanced h₃.balanced).Equiv (m₂.union m₃ h₂.balanced h₃.balanced) := by
33953395 revert equiv
@@ -3402,10 +3402,10 @@ theorem union!_equiv_congr_left {m₃ : Impl α β} [TransOrd α]
34023402 (h₁ : m₁.WF) (h₂ : m₂.WF) (h₃ : m₃.WF) (equiv : m₁.Equiv m₂) :
34033403 (m₁.union! m₃).Equiv (m₂.union! m₃) := by
34043404 rw [← union_eq_union!, ← union_eq_union!]
3405- apply union_equiv_congr_left
3405+ apply Equiv.union_left
34063406 all_goals wf_trivial
34073407
3408- theorem union_equiv_congr_right {m₃ : Impl α β} [TransOrd α]
3408+ theorem Equiv.union_right {m₃ : Impl α β} [TransOrd α]
34093409 (h₁ : m₁.WF) (h₂ : m₂.WF) (h₃ : m₃.WF) (equiv : m₂.Equiv m₃) :
34103410 (m₁.union m₂ h₁.balanced h₂.balanced).Equiv (m₁.union m₃ h₁.balanced h₃.balanced) := by
34113411 revert equiv
@@ -3418,7 +3418,23 @@ theorem union!_equiv_congr_right {m₃ : Impl α β} [TransOrd α]
34183418 (h₁ : m₁.WF) (h₂ : m₂.WF) (h₃ : m₃.WF) (equiv : m₂.Equiv m₃) :
34193419 (m₁.union! m₂).Equiv (m₁.union! m₃) := by
34203420 rw [← union_eq_union!, ← union_eq_union!]
3421- apply union_equiv_congr_right
3421+ apply Equiv.union_right
3422+ all_goals wf_trivial
3423+
3424+ theorem Equiv.union_congr {m₃ m₄: Impl α β} [TransOrd α]
3425+ (h₁ : m₁.WF) (h₂ : m₂.WF) (h₃ : m₃.WF) (h₄ : m₄.WF) (equiv₁ : m₁.Equiv m₃)(equiv₂ : m₂.Equiv m₄) :
3426+ (m₁.union m₂ h₁.balanced h₂.balanced).Equiv (m₃.union m₄ h₃.balanced h₄.balanced) := by
3427+ revert equiv₁ equiv₂
3428+ simp_to_model [Equiv, union]
3429+ intro equiv₁ equiv₂
3430+ apply List.insertList_congr equiv₁ equiv₂
3431+ all_goals wf_trivial
3432+
3433+ theorem union!_equiv_congr {m₃ m₄: Impl α β} [TransOrd α]
3434+ (h₁ : m₁.WF) (h₂ : m₂.WF) (h₃ : m₃.WF) (h₄ : m₄.WF) (equiv₁ : m₁.Equiv m₃) (equiv₂ : m₂.Equiv m₄) :
3435+ (m₁.union! m₂).Equiv (m₃.union! m₄) := by
3436+ rw [← union_eq_union!, ← union_eq_union!]
3437+ apply Equiv.union_congr
34223438 all_goals wf_trivial
34233439
34243440/- get? -/
0 commit comments