@@ -39,7 +39,7 @@ private theorem getElem?_zipWithAll {f : Option α → Option β → γ} {i : Na
3939private theorem map_id (l : List α) : map (id : α → α) l = l := by
4040 induction l <;> simp_all
4141
42- [simp] private theorem map_id' (l : List α) : map (fun (a : α) => a) l = l := map_id l
42+ private theorem map_id' (l : List α) : map (fun (a : α) => a) l = l := map_id l
4343
4444private theorem getElem?_zipWith {f : α → β → γ} {i : Nat} :
4545 (zipWith f as bs)[i]? = match as[i]?, bs[i]? with
@@ -52,9 +52,9 @@ private theorem getElem?_zipWith {f : α → β → γ} {i : Nat} :
5252 | nil => simp
5353 | cons b bs => cases i <;> simp_all [getElem?_cons_succ]
5454
55- @[simp] private theorem mem_cons_self {a : α} {l : List α} : a ∈ a :: l := .head ..
55+ private theorem mem_cons_self {a : α} {l : List α} : a ∈ a :: l := .head ..
5656
57- @[simp] private theorem mem_cons_of_mem (y : α) {a : α} {l : List α} : a ∈ l → a ∈ y :: l := .tail _
57+ private theorem mem_cons_of_mem (y : α) {a : α} {l : List α} : a ∈ l → a ∈ y :: l := .tail _
5858
5959private theorem length_map {as : List α} (f : α → β) : (as.map f).length = as.length := by
6060 induction as with
@@ -314,7 +314,7 @@ theorem dot_of_left_zero (w : ∀ x, x ∈ xs → x = 0) : dot xs ys = 0 := by
314314 cases ys with
315315 | nil => simp
316316 | cons y ys =>
317- rw [dot_cons₂, w x (by simp), ih]
317+ rw [dot_cons₂, w x (by simp [List.mem_cons_self] ), ih]
318318 · simp
319319 · intro x m
320320 apply w
@@ -363,7 +363,7 @@ theorem dvd_gcd (xs : IntList) (c : Nat) (w : ∀ {a : Int}, a ∈ xs → (c : I
363363 simp
364364 apply Nat.dvd_gcd
365365 · apply w
366- simp
366+ simp [List.mem_cons_self]
367367 · apply ih
368368 intro b m
369369 apply w
0 commit comments