@@ -31,11 +31,22 @@ theorem succ_eq {n : Nat} : succ n = n + 1 :=
3131theorem succMany_eq {n : Nat} : succMany n m = m + n := by
3232 rfl
3333
34+ end Std.PRange.Nat
35+
36+ namespace Nat
37+ open Std Std.PRange Std.PRange.Nat
38+
3439@[simp]
3540theorem size_rcc {a b : Nat} :
3641 (a...=b).size = b + 1 - a := by
3742 simp [Rcc.size, Rxc.HasSize.size]
3843
44+ @[deprecated size_rcc (since := "2025-10-30")]
45+ def _root_.Std.PRange.Nat.size_Rcc := @_root_.Nat.size_rcc
46+
47+ @[deprecated size_rcc (since := "2025-12-01")]
48+ def _root_.Std.PRange.Nat.size_rcc := @_root_.Nat.size_rcc
49+
3950@[simp]
4051theorem length_toList_rcc {a b : Nat} :
4152 (a...=b).toList.length = b + 1 - a := by
@@ -46,15 +57,18 @@ theorem size_toArray_rcc {a b : Nat} :
4657 (a...=b).toArray.size = b + 1 - a := by
4758 simp only [Rcc.size_toArray, size_rcc]
4859
49- @[deprecated size_rcc (since := "2025-10-30")]
50- def size_Rcc := @size_rcc
51-
5260@[simp]
5361theorem size_rco {a b : Nat} :
5462 (a...b).size = b - a := by
5563 simp only [Rco.size, Rxo.HasSize.size, Rxc.HasSize.size]
5664 omega
5765
66+ @[deprecated size_rco (since := "2025-10-30")]
67+ def _root_.Std.PRange.Nat.size_Rco := @_root_.Nat.size_rco
68+
69+ @[deprecated size_rco (since := "2025-12-01")]
70+ def _root_.Std.PRange.Nat.size_rco := @_root_.Nat.size_rco
71+
5872@[simp]
5973theorem length_toList_rco {a b : Nat} :
6074 (a...b).toList.length = b - a := by
@@ -65,14 +79,17 @@ theorem size_toArray_rco {a b : Nat} :
6579 (a...b).toArray.size = b - a := by
6680 simp only [Rco.size_toArray, size_rco]
6781
68- @[deprecated size_rco (since := "2025-10-30")]
69- def size_Rco := @size_rco
70-
7182@[simp]
7283theorem size_roc {a b : Nat} :
7384 (a<...=b).size = b - a := by
7485 simp [Roc.size, Rxc.HasSize.size]
7586
87+ @[deprecated size_roc (since := "2025-10-30")]
88+ def _root_.Std.PRange.Nat.size_Roc := @_root_.Nat.size_roc
89+
90+ @[deprecated size_roc (since := "2025-12-01")]
91+ def _root_.Std.PRange.Nat.size_roc := @_root_.Nat.size_roc
92+
7693@[simp]
7794theorem length_toList_roc {a b : Nat} :
7895 (a<...=b).toList.length = b - a := by
@@ -83,14 +100,17 @@ theorem size_toArray_roc {a b : Nat} :
83100 (a<...=b).toArray.size = b - a := by
84101 simp only [Roc.size_toArray, size_roc]
85102
86- @[deprecated size_roc (since := "2025-10-30")]
87- def size_Roc := @size_roc
88-
89103@[simp]
90104theorem size_roo {a b : Nat} :
91105 (a<...b).size = b - a - 1 := by
92106 simp [Roo.size, Rxo.HasSize.size, Rxc.HasSize.size]
93107
108+ @[deprecated size_roo (since := "2025-10-30")]
109+ def _root_.Std.PRange.Nat.size_Roo := @_root_.Nat.size_roo
110+
111+ @[deprecated size_roo (since := "2025-12-01")]
112+ def _root_.Std.PRange.Nat.size_roo := @_root_.Nat.size_roo
113+
94114@[simp]
95115theorem length_toList_roo {a b : Nat} :
96116 (a<...b).toList.length = b - a - 1 := by
@@ -101,14 +121,17 @@ theorem size_toArray_roo {a b : Nat} :
101121 (a<...b).toArray.size = b - a - 1 := by
102122 simp only [Roo.size_toArray, size_roo]
103123
104- @[deprecated size_roo (since := "2025-10-30")]
105- def size_Roo := @size_roo
106-
107124@[simp]
108125theorem size_ric {b : Nat} :
109126 (*...=b).size = b + 1 := by
110127 simp [Ric.size, Rxc.HasSize.size]
111128
129+ @[deprecated size_ric (since := "2025-10-30")]
130+ def _root_.Std.PRange.Nat.size_Ric := @_root_.Nat.size_ric
131+
132+ @[deprecated size_ric (since := "2025-12-01")]
133+ def _root_.Std.PRange.Nat.size_ric := @_root_.Nat.size_ric
134+
112135@[simp]
113136theorem length_toList_ric {b : Nat} :
114137 (*...=b).toList.length = b + 1 := by
@@ -119,14 +142,17 @@ theorem size_toArray_ric {b : Nat} :
119142 (*...=b).toArray.size = b + 1 := by
120143 simp only [Ric.size_toArray, size_ric]
121144
122- @[deprecated size_ric (since := "2025-10-30")]
123- def size_Ric := @size_ric
124-
125145@[simp]
126146theorem size_rio {b : Nat} :
127147 (*...b).size = b := by
128148 simp [Rio.size, Rxo.HasSize.size, Rxc.HasSize.size]
129149
150+ @[deprecated size_rio (since := "2025-10-30")]
151+ def _root_.Std.PRange.Nat.size_Rio := @_root_.Nat.size_rio
152+
153+ @[deprecated size_rio (since := "2025-12-01")]
154+ def _root_.Std.PRange.Nat.size_rio := @_root_.Nat.size_rio
155+
130156@[simp]
131157theorem length_toList_rio {b : Nat} :
132158 (*...b).toList.length = b := by
@@ -137,9 +163,6 @@ theorem size_toArray_rio {b : Nat} :
137163 (*...b).toArray.size = b := by
138164 simp only [Rio.size_toArray, size_rio]
139165
140- @[deprecated size_rio (since := "2025-10-30")]
141- def size_Rio := @size_rio
142-
143166@[simp]
144167theorem toList_toArray_rco {m n : Nat} :
145168 (m...n).toArray.toList = (m...n).toList := by
@@ -159,11 +182,11 @@ theorem toList_rco_succ_succ {m n : Nat} :
159182 ((m+1 )...(n+1 )).toList = (m...n).toList.map (· + 1 ) := by
160183 simp [← succ_eq, Rco.toList_succ_succ_eq_map]
161184
162- @[deprecated toList_rco_succ_succ (since := "2025-10-30")]
163- def toList_Rco_succ_succ := @toList_rco_succ_succ
185+ @[deprecated _root_.Nat. toList_rco_succ_succ (since := "2025-10-30")]
186+ def _root_.Std.PRange.Nat. toList_Rco_succ_succ := @_root_.Nat. toList_rco_succ_succ
164187
165- @[deprecated toList_rco_succ_succ (since := "2025-08-22 ")]
166- def ClosedOpen.toList_succ_succ := @toList_rco_succ_succ
188+ @[deprecated _root_.Nat. toList_rco_succ_succ (since := "2025-12-01 ")]
189+ def _root_.Std.PRange.Nat.toList_rco_succ_succ := @_root_.Nat. toList_rco_succ_succ
167190
168191theorem toList_rco_succ_right_eq_cons_map {m n : Nat} (h : m ≤ n) :
169192 (m...(n + 1 )).toList = m :: (m...n).toList.map (· + 1 ) := by
@@ -541,11 +564,11 @@ The following is an example reproving {name}`length_toList_rco`.
541564
542565```lean
543566example (a b : Nat) : (a...b).toList.length = b - a := by
544- induction a, b using Std.PRange. Nat.induct_rco_left
567+ induction a, b using Nat.induct_rco_left
545568 case base =>
546- simp only [Std.PRange. Nat.toList_rco_eq_nil, List.length_nil, Nat.sub_eq_zero_of_le, *]
569+ simp only [Nat.toList_rco_eq_nil, List.length_nil, Nat.sub_eq_zero_of_le, *]
547570 case step =>
548- simp only [Std.PRange. Nat.toList_rco_eq_cons, List.length_cons, *]; omega
571+ simp only [Nat.toList_rco_eq_cons, List.length_cons, *]; omega
549572```
550573-/
551574theorem induct_rco_left (motive : Nat → Nat → Prop )
@@ -573,11 +596,11 @@ The following is an example reproving {name}`length_toList_rco`.
573596
574597```lean
575598example (a b : Nat) : (a...b).toList.length = b - a := by
576- induction a, b using Std.PRange. Nat.induct_rco_right
599+ induction a, b using Nat.induct_rco_right
577600 case base =>
578- simp only [Std.PRange. Nat.toList_rco_eq_nil, List.length_nil, Nat.sub_eq_zero_of_le, *]
601+ simp only [Nat.toList_rco_eq_nil, List.length_nil, Nat.sub_eq_zero_of_le, *]
579602 case step a b hle ih =>
580- rw [Std.PRange. Nat.toList_rco_eq_append (by omega),
603+ rw [Nat.toList_rco_eq_append (by omega),
581604 List.length_append, List.length_singleton, Nat.add_sub_cancel, ih]
582605 omega
583606```
@@ -940,11 +963,11 @@ The following is an example reproving {name}`length_toList_rcc`.
940963
941964```lean
942965example (a b : Nat) : (a...=b).toList.length = b + 1 - a := by
943- induction a, b using Std.PRange. Nat.induct_rcc_left
966+ induction a, b using Nat.induct_rcc_left
944967 case base =>
945- simp only [Std.PRange. Nat.toList_rcc_eq_nil, List.length_nil, *]; omega
968+ simp only [Nat.toList_rcc_eq_nil, List.length_nil, *]; omega
946969 case step =>
947- simp only [Std.PRange. Nat.toList_rcc_eq_cons, List.length_cons, *]; omega
970+ simp only [Nat.toList_rcc_eq_cons, List.length_cons, *]; omega
948971```
949972-/
950973theorem induct_rcc_left (motive : Nat → Nat → Prop )
@@ -972,17 +995,17 @@ The following is an example reproving {name}`length_toList_rcc`.
972995
973996```lean
974997example (a b : Nat) : (a...=b).toList.length = b + 1 - a := by
975- induction a, b using Std.PRange. Nat.induct_rcc_right
998+ induction a, b using Nat.induct_rcc_right
976999 case base a b hge =>
9771000 by_cases h : b < a
978- · simp only [Std.PRange. Nat.toList_rcc_eq_nil, List.length_nil, *]
1001+ · simp only [Nat.toList_rcc_eq_nil, List.length_nil, *]
9791002 omega
9801003 · have : b = a := by omega
981- simp only [Std.PRange. Nat.toList_rcc_eq_singleton, List.length_singleton,
1004+ simp only [Nat.toList_rcc_eq_singleton, List.length_singleton,
9821005 Nat.add_sub_cancel_left, *]
9831006 case step a b hle ih =>
984- rw [Std.PRange. Nat.toList_rcc_succ_right_eq_append (by omega),
985- List.length_append, List. length_singleton, ih] <;> omega
1007+ rw [Nat.toList_rcc_succ_right_eq_append (by omega), List.length_append ,
1008+ List.length_singleton, ih] <;> omega
9861009```
9871010-/
9881011theorem induct_rcc_right (motive : Nat → Nat → Prop )
@@ -1346,11 +1369,11 @@ The following is an example reproving {name}`length_toList_roo`.
13461369
13471370```lean
13481371example (a b : Nat) : (a<...b).toList.length = b - a - 1 := by
1349- induction a, b using Std.PRange. Nat.induct_roo_left
1372+ induction a, b using Nat.induct_roo_left
13501373 case base =>
1351- simp only [Std.PRange. Nat.toList_roo_eq_nil, List.length_nil, *]; omega
1374+ simp only [Nat.toList_roo_eq_nil, List.length_nil, *]; omega
13521375 case step =>
1353- simp only [Std.PRange. Nat.toList_roo_eq_cons, List.length_cons, *]; omega
1376+ simp only [Nat.toList_roo_eq_cons, List.length_cons, *]; omega
13541377```
13551378-/
13561379theorem induct_roo_left (motive : Nat → Nat → Prop )
@@ -1378,11 +1401,11 @@ The following is an example reproving {name}`length_toList_roo`.
13781401
13791402```lean
13801403example (a b : Nat) : (a<...b).toList.length = b - a - 1 := by
1381- induction a, b using Std.PRange. Nat.induct_roo_right
1404+ induction a, b using Nat.induct_roo_right
13821405 case base =>
1383- simp only [Std.PRange. Nat.toList_roo_eq_nil, List.length_nil, *]; omega
1406+ simp only [Nat.toList_roo_eq_nil, List.length_nil, *]; omega
13841407 case step a b hle ih =>
1385- rw [Std.PRange. Nat.toList_roo_eq_append (by omega),
1408+ rw [Nat.toList_roo_eq_append (by omega),
13861409 List.length_append, List.length_singleton, Nat.add_sub_cancel, ih]
13871410 omega
13881411```
@@ -1773,11 +1796,11 @@ The following is an example reproving {name}`length_toList_roc`.
17731796
17741797```lean
17751798example (a b : Nat) : (a<...=b).toList.length = b - a := by
1776- induction a, b using Std.PRange. Nat.induct_roc_left
1799+ induction a, b using Nat.induct_roc_left
17771800 case base =>
1778- simp only [Std.PRange. Nat.toList_roc_eq_nil, List.length_nil, *]; omega
1801+ simp only [Nat.toList_roc_eq_nil, List.length_nil, *]; omega
17791802 case step =>
1780- simp only [Std.PRange. Nat.toList_roc_eq_cons, List.length_cons, *]; omega
1803+ simp only [Nat.toList_roc_eq_cons, List.length_cons, *]; omega
17811804```
17821805-/
17831806theorem induct_roc_left (motive : Nat → Nat → Prop )
@@ -1800,11 +1823,11 @@ The following is an example reproving {name}`length_toList_roc`.
18001823
18011824```lean
18021825example (a b : Nat) : (a<...=b).toList.length = b - a := by
1803- induction a, b using Std.PRange. Nat.induct_roc_right
1826+ induction a, b using Nat.induct_roc_right
18041827 case base =>
1805- simp only [Std.PRange. Nat.toList_roc_eq_nil, List.length_nil, *]; omega
1828+ simp only [Nat.toList_roc_eq_nil, List.length_nil, *]; omega
18061829 case step a b hle ih =>
1807- rw [Std.PRange. Nat.toList_roc_eq_append (by omega),
1830+ rw [Nat.toList_roc_eq_append (by omega),
18081831 List.length_append, List.length_singleton, Nat.add_sub_cancel, ih]
18091832 omega
18101833```
@@ -2437,7 +2460,7 @@ theorem getD_toArray_ric_eq_fallback {n i fallback : Nat} (h : n < i) :
24372460 (*...=n).toArray.getD i fallback = fallback := by
24382461 rw [toArray_ric_eq_toArray_rio, getD_toArray_rio_eq_fallback]; omega
24392462
2440- end Std.PRange. Nat
2463+ end Nat
24412464
24422465theorem List.range_eq_toList_rco {n : Nat} :
24432466 List.range n = (0 ...n).toList := by
0 commit comments