Skip to content

margins() not working with nested random effects in lmer() #182

@cknotz

Description

@cknotz

Dear Thomas,

first, thanks for putting together and maintaining this package - would be difficult to work without it!

A possible bug: I have an issue with getting marginal effects from a linear mixed model that is estimated with lmerTest::lmer() (the same with lme4::lmer()) and which includes nested random effects.

To give an example:

library(lmerTest)
library(margins)

# Example data: 96 students clustered in 10 schools
mlmdata <- haven::read_dta("https://stats.idre.ucla.edu/stat/examples/imm/imm10.dta")

# Factor variable used below for nested random effects:
mlmdata$parented_fac <- as.factor(mlmdata$parented)

This, without nesting, works:

m1 <- lmerTest::lmer(math ~ parented_fac + (1|schid),
                         data = mlmdata)
summary(m1)
margins(m1)

This, with nesting, does not:

m2 <- lmerTest::lmer(math ~ parented_fac + (1|schid) + (1|schid:parented_fac),
                     data = mlmdata)
summary(m2)
margins(m2)

The error I get is:

Error in levelfun(r, n, allow.new.levels = allow.new.levels) : 
  new levels detected in newdata

I get the same issue when I work with my actual data (which I cannot share at the moment). I also get the same issue when I try to get margins from an interactive model with at().

traceback()

16: stop("new levels detected in newdata")
15: levelfun(r, n, allow.new.levels = allow.new.levels)
14: (function (r, n) 
    levelfun(r, n, allow.new.levels = allow.new.levels))(dots[[1L]][[2L]], 
        dots[[2L]][[2L]])
13: mapply(FUN = f, ..., SIMPLIFY = FALSE)
12: Map(function(r, n) levelfun(r, n, allow.new.levels = allow.new.levels), 
        re[names(new_levels)], new_levels)
11: mkNewReTrms(object, rfd, re.form, na.action = na.action, allow.new.levels = allow.new.levels)
10: predict.merMod(model, newdata = out, type = type, re.form = re.form, 
        ...)
9: predict(model, newdata = out, type = type, re.form = re.form, 
       ...)
8: prediction.merMod(model = model, data = d0, type = type, calculate_se = FALSE, 
       ...)
7: prediction(model = model, data = d0, type = type, calculate_se = FALSE, 
       ...)
6: dydx.factor(data = data, model = model, varslist$fnames[i], type = type, 
       fwrap = FALSE, as.data.frame = as.data.frame, ...)
5: marginal_effects.lmerMod(model = model, data = data, variables = variables, 
       type = type, eps = eps, varslist = varslist, ...)
4: marginal_effects(model = model, data = data, variables = variables, 
       type = type, eps = eps, varslist = varslist, ...)
3: build_margins(model = model, data = data_list[[i]], variables = variables, 
       type = type, vcov = vcov, vce = vce, iterations = iterations, 
       unit_ses = unit_ses, eps = eps, varslist = varslist, ...)
2: margins.lmerMod(m2)
1: margins(m2)

SessionInfo()

R version 4.1.2 (2021-11-01)
Platform: x86_64-apple-darwin17.0 (64-bit)
Running under: macOS Big Sur 10.16

Matrix products: default
LAPACK: /Library/Frameworks/R.framework/Versions/4.1/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] margins_0.3.26 lmerTest_3.1-3 lme4_1.1-27.1  Matrix_1.4-0  

loaded via a namespace (and not attached):
 [1] Rcpp_1.0.8          nloptr_1.2.2.3      pillar_1.6.5        compiler_4.1.2      forcats_0.5.1       tools_4.1.2        
 [7] boot_1.3-28         lifecycle_1.0.1     tibble_3.1.6        gtable_0.3.0        nlme_3.1-153        lattice_0.20-45    
[13] pkgconfig_2.0.3     rlang_0.4.12        rstudioapi_0.13     cli_3.1.1           DBI_1.1.2           curl_4.3.2         
[19] yaml_2.2.1          haven_2.4.3         dplyr_1.0.7         generics_0.1.1      vctrs_0.3.8         hms_1.1.1          
[25] grid_4.1.2          tidyselect_1.1.1    data.table_1.14.2   glue_1.6.1          R6_2.5.1            fansi_1.0.2        
[31] prediction_0.3.14   minqa_1.2.4         tzdb_0.2.0          readr_2.1.1         ggplot2_3.3.5       purrr_0.3.4        
[37] magrittr_2.0.1      scales_1.1.1        ellipsis_0.3.2      MASS_7.3-54         splines_4.1.2       assertthat_0.2.1   
[43] colorspace_2.0-2    numDeriv_2016.8-1.1 utf8_1.2.2          munsell_0.5.0       crayon_1.4.2      

I hope you can help! Many thanks in any case for your time!

Best,
Carlo

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions