-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
executable file
·214 lines (183 loc) · 8.57 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
import os
import time
from collections import deque
import numpy as np
import torch
from core import algorithms, utils
from core.arguments import get_args
from core.envs import make_vec_envs
from core.agents import PolicyGradientAgent, CPCPolicyGradientAgent
from core.storage import RolloutStorage, CPCRolloutStorage
from evaluation import evaluate
def main():
args = get_args()
torch.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
if args.cuda and torch.cuda.is_available() and args.cuda_deterministic:
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
log_dir = os.path.expanduser(args.log_dir)
eval_log_dir = log_dir + "_eval"
utils.cleanup_log_dir(log_dir)
utils.cleanup_log_dir(eval_log_dir)
torch.set_num_threads(1)
device = torch.device("cuda:0" if args.cuda else "cpu")
if not args.use_proper_time_limits:
envs = make_vec_envs(args.env_name, args.seed, args.num_processes,
args.gamma, args.log_dir, device, False, args.num_frame_stack)
else:
envs = make_vec_envs(args.env_name, args.seed, args.num_processes,
args.gamma, args.log_dir, device, True, args.num_frame_stack, args.max_episode_steps)
actor_critic = PolicyGradientAgent(
envs.observation_space.shape,
envs.action_space,
base_kwargs={'recurrent': args.recurrent_policy})
if args.use_cpc:
actor_critic = CPCPolicyGradientAgent(
envs.observation_space.shape,
envs.action_space,
base_kwargs={'recurrent': args.recurrent_policy})
actor_critic.to(device)
if args.algo == 'a2c':
agent = algorithms.A2C_ACKTR(
actor_critic,
args.value_loss_coef,
args.entropy_coef,
lr=args.lr,
eps=args.eps,
alpha=args.alpha,
max_grad_norm=args.max_grad_norm)
if args.use_cpc:
agent = algorithms.CPC_A2C_ACKTR(
actor_critic,
args.value_loss_coef,
args.entropy_coef,
lr=args.lr,
eps=args.eps,
alpha=args.alpha,
max_grad_norm=args.max_grad_norm,
device=device,
num_steps=args.num_steps)
elif args.algo == 'ppo':
agent = algorithms.PPO(
actor_critic,
args.clip_param,
args.ppo_epoch,
args.num_mini_batch,
args.value_loss_coef,
args.entropy_coef,
lr=args.lr,
eps=args.eps,
max_grad_norm=args.max_grad_norm)
elif args.algo == 'acktr':
agent = algorithms.A2C_ACKTR(
actor_critic, args.value_loss_coef, args.entropy_coef, acktr=True)
rollouts = RolloutStorage(args.num_steps, args.num_processes,
envs.observation_space.shape, envs.action_space,
actor_critic.recurrent_hidden_state_size)
if args.use_cpc:
rollouts = CPCRolloutStorage(args.num_steps, args.num_processes,
envs.observation_space.shape, envs.action_space,
actor_critic.recurrent_hidden_state_size, actor_critic.base.output_size)
obs = envs.reset()
rollouts.obs[0].copy_(obs)
rollouts.to(device)
episode_rewards = deque(maxlen=10)
start = time.time()
# lehduong: Total number of gradient updates
# basically, the agent will act on the environment for a number of steps
# which is usually referred to as n_steps. Then, we compute the cummulative
# reward, update the policy. After that, we continue rolling out the agent
# in the environment repeatedly. If the trajectory is ended, simply reset it and # do it again.
num_updates = int(
args.num_env_steps) // args.num_steps // args.num_processes
for j in range(num_updates):
# decrease learning rate linearly
if args.use_linear_lr_decay:
utils.update_linear_schedule(
agent.optimizer, j, num_updates,
agent.optimizer.lr if args.algo == "acktr" else args.lr)
# Rolling out, collecting and storing SARS (State, action, reward, new state)
for step in range(args.num_steps):
# Sample actions
with torch.no_grad():
if args.use_cpc:
# if using CPC actor critic, act method also returns embedding of
value, action, action_log_prob, recurrent_hidden_states, state_feat, action_feat = actor_critic.act(
rollouts.obs[step], rollouts.recurrent_hidden_states[step],
rollouts.masks[step])
else:
value, action, action_log_prob, recurrent_hidden_states = actor_critic.act(
rollouts.obs[step], rollouts.recurrent_hidden_states[step],
rollouts.masks[step])
# Obser reward and next obs
obs, reward, done, infos = envs.step(action)
for info in infos:
if 'episode' in info.keys():
episode_rewards.append(info['episode']['r'])
# If done then clean the history of observations.
masks = torch.FloatTensor(
[[0.0] if done_ else [1.0] for done_ in done])
bad_masks = torch.FloatTensor(
[[0.0] if 'bad_transition' in info.keys() else [1.0]
for info in infos])
if args.use_cpc:
rollouts.insert(obs, recurrent_hidden_states, action,
action_log_prob, value, reward, masks, bad_masks, state_feat, action_feat)
else:
rollouts.insert(obs, recurrent_hidden_states, action,
action_log_prob, value, reward, masks, bad_masks)
with torch.no_grad():
next_value = actor_critic.get_value(
rollouts.obs[-1], rollouts.recurrent_hidden_states[-1],
rollouts.masks[-1]).detach()
rollouts.compute_returns(next_value, args.use_gae, args.gamma,
args.gae_lambda, args.use_proper_time_limits)
if args.use_cpc:
value_loss, action_loss, dist_entropy, cpc_result = agent.update(rollouts)
else:
value_loss, action_loss, dist_entropy = agent.update(rollouts)
rollouts.after_update()
# save for every interval-th episode or for the last epoch
if (j % args.save_interval == 0
or j == num_updates - 1) and args.save_dir != "":
save_path = os.path.join(args.save_dir, args.algo)
try:
os.makedirs(save_path)
except OSError:
pass
torch.save([
actor_critic,
getattr(utils.get_vec_normalize(envs), 'ob_rms', None)
], os.path.join(save_path, args.env_name + ".pt"))
if j % args.log_interval == 0 and len(episode_rewards) > 1:
total_num_steps = (j + 1) * args.num_processes * args.num_steps
end = time.time()
print(
"\nUpdates {}, num timesteps {}, FPS {} \n Last {} training episodes: mean/median reward {:.1f}/{:.1f}, min/max reward {:.1f}/{:.1f}"
.format(j, total_num_steps,
int(total_num_steps / (end - start)),
len(episode_rewards), np.mean(episode_rewards),
np.median(episode_rewards), np.min(episode_rewards),
np.max(episode_rewards), dist_entropy, value_loss,
action_loss))
print(
" Value loss: {:.2f} Action loss {:2f} Dist Entropy {:2f}"
.format(value_loss,
action_loss,
dist_entropy)
)
if args.use_cpc:
print(
" CPC state loss {:.2f}, CPC state action loss {:.2f}, CPC state acc {:.2f}, CPC state action acc {:.2f}"
.format(cpc_result['nce_state'],
cpc_result['nce_state_action'],
cpc_result['accuracy_state'],
cpc_result['accuracy_state_action']))
if (args.eval_interval is not None and len(episode_rewards) > 1
and j % args.eval_interval == 0):
ob_rms = utils.get_vec_normalize(envs).ob_rms
evaluate(actor_critic, ob_rms, args.env_name, args.seed,
args.num_processes, eval_log_dir, device)
if __name__ == "__main__":
main()