-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_test.py
81 lines (64 loc) · 2.56 KB
/
train_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
# Trainer Test
import unittest
import numpy as np
from parameterized import parameterized
import optimizer
import train
from layers import conv, mlp
class TrainTest(unittest.TestCase):
@parameterized.expand([['None'], ['Adam']])
def test_train_mlp(self, optimizer_name: str):
optimizer_cls = (optimizer.AdamOptimizer if optimizer_name == 'Adam'
else optimizer.SGDOptimizer)
np.random.seed(0)
batch_size = 128
input_features = 16
features = [16, 32, 64, 32, 16]
layers = []
for i, f in enumerate(features):
layers.append(mlp.Dense(units=f, name=f'layer_{i}'))
x = np.random.uniform(0.0, 1.0,
size=[batch_size,
input_features]).astype(np.float32)
targets = np.random.uniform(0.0, 1.0,
size=[batch_size,
features[-1]]).astype(np.float32)
trainer = train.Trainer(layers)
print(f'\nTraining MLP with Optimizer {optimizer_name}:')
trainer.train(inputs=x,
targets=targets,
steps=10,
optimizer_=optimizer_cls(1e-4))
print('Eval:')
trainer.eval(inputs=x, targets=targets)
# Additional eval run won't change loss
trainer.eval(inputs=x, targets=targets)
def test_train_conv(self):
np.random.seed(0)
batch_size = 16
height = 32
width = 32
input_features = 16
kernel_sizes = [1, 3, 5, 3, 1]
channels = [16, 32, 64, 32, 16]
layers = []
for i, (c, k) in enumerate(zip(channels, kernel_sizes)):
layers.append(
conv.Conv2D(channels=c, kernel_size=k, name=f'layer_{i}'))
x = np.random.uniform(-1.0,
1.0,
size=[batch_size, height, width,
input_features]).astype(np.float32)
targets = np.random.uniform(
0.0, 1.0, size=[batch_size, height, width,
channels[-1]]).astype(np.float32)
trainer = train.Trainer(layers)
print('\nTraining Conv:')
trainer.train(inputs=x,
targets=targets,
steps=10,
optimizer_=optimizer.SGDOptimizer(1e-6))
print('Eval:')
trainer.eval(inputs=x, targets=targets)
# Additional eval run won't change loss
trainer.eval(inputs=x, targets=targets)