-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.py
230 lines (212 loc) · 11.7 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
import os
import yaml
import torch
import argparse
import numpy as np
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
from models import ModelCollection
from datasets import MelDataset
from utils import get_vocoder, get_param_num, log, synth_one_sample
def evaluate_step(model, dataloader):
nll = 0.
con_kl = 0.
spk_kl = 0.
pro_kl = 0.
pro_reg = 0.
pit_kl = 0.
ene_kl = 0.
sample_size = 0
for _, mels, spk_mels, lf0_q, ene_q, lens in dataloader:
mels = mels.to(model.device)
spk_mels = spk_mels.to(model.device)
lf0_q = lf0_q.to(model.device)
ene_q = ene_q.to(model.device)
lens = lens.to(model.device)
outputs = model(mels, spk_mels, mels, lens)
_nll, _con_kl, _spk_kl, _pro_kl, _pro_reg, _pit_kl, _ene_kl = model.loss_fn(outputs, mels, lf0_q, ene_q, lens)
batch_size = mels.shape[0]
sample_size += batch_size
nll += _nll.item() * batch_size
con_kl += _con_kl.item() * batch_size
spk_kl += _spk_kl.item() * batch_size
pro_kl += _pro_kl.item() * batch_size
pro_reg += _pro_reg.item() * batch_size
pit_kl += _pit_kl.item() * batch_size
ene_kl += _ene_kl.item() * batch_size
return (nll / sample_size, con_kl / sample_size, spk_kl / sample_size, pro_kl / sample_size,
pro_reg / sample_size, pit_kl / sample_size, ene_kl / sample_size)
def main(args, configs):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print("Start training ...")
preprocess_config, model_config, train_config = configs
sampling_rate = preprocess_config["preprocessing"]["audio"]["sampling_rate"]
trn_set = MelDataset(preprocess_config, subset='train')
val_set = MelDataset(preprocess_config, subset='val')
tst_set = MelDataset(preprocess_config, subset='test')
batch_size = train_config["optimizer"]["batch_size"]
trn_loader = DataLoader(
trn_set, batch_size=batch_size, num_workers=8, shuffle=True,
collate_fn=trn_set.collate_fn, pin_memory=True)
val_loader = DataLoader(
val_set, batch_size=batch_size, num_workers=8, shuffle=True,
collate_fn=val_set.collate_fn, pin_memory=True)
val_single_sampler = DataLoader(val_set, batch_size=1, shuffle=True)
tst_single_sampler = DataLoader(tst_set, batch_size=1, shuffle=True)
# Prepare model
model = ModelCollection[args.mdl](preprocess_config, model_config, device).to(device)
num_param = get_param_num(model)
print("Number of Parameters:", num_param)
# set optimizers
learning_rate = train_config["optimizer"]["learning_rate"]
betas = train_config["optimizer"]["betas"]
eps = train_config["optimizer"]["eps"]
optim = torch.optim.AdamW(model.parameters(), learning_rate, betas=betas, eps=eps)
# Load vocoder
vocoder = get_vocoder(model_config, device)
# Training hyper-parameters
total_step = train_config["step"]["total_step"]
log_step = train_config["step"]["log_step"]
save_step = train_config["step"]["save_step"]
val_step = train_config["step"]["val_step"]
con_gamma = train_config["optimizer"]["con_gamma"]
spk_gamma = train_config["optimizer"]["spk_gamma"]
pro_gamma = train_config["optimizer"]["pro_gamma"]
pro_reg_w = train_config["optimizer"]["pro_reg_w"]
con_mi = args.con_mi if args.con_mi is not None else train_config["optimizer"]["con_mi"]
spk_mi = args.spk_mi if args.spk_mi is not None else train_config["optimizer"]["spk_mi"]
pro_mi = train_config["optimizer"]["pro_mi"]
stop_step = train_config["step"]["mi_stop"]
# Experiment name
exp_name = 'output-{}-c_{}_{}-s_{}_{}-p_{}_{}'.format(
args.mdl, con_gamma, con_mi, spk_gamma, spk_mi, pro_gamma, pro_mi)
# Load model checkpoint
if args.restore_step:
ckpt_path = os.path.join(
exp_name, train_config["path"]["ckpt_path"], "{}.pth.tar".format(args.restore_step))
ckpt = torch.load(ckpt_path)
model.load_state_dict(ckpt["model"])
# Init logger
for p in train_config["path"].values():
os.makedirs(os.path.join(exp_name, p), exist_ok=True)
train_log_path = os.path.join(exp_name, train_config["path"]["log_path"], "train")
val_log_path = os.path.join(exp_name, train_config["path"]["log_path"], "val")
os.makedirs(train_log_path, exist_ok=True)
os.makedirs(val_log_path, exist_ok=True)
train_logger = SummaryWriter(train_log_path)
val_logger = SummaryWriter(val_log_path)
val_losses = []
global_step = args.restore_step + 1
while True:
for fids, mels, spk_mels, lf0_q, ene_q, lens in trn_loader:
mels = mels.to(device)
spk_mels = spk_mels.to(device)
lf0_q = lf0_q.to(device)
ene_q = ene_q.to(device)
lens = lens.to(device)
model.zero_grad(set_to_none=True)
outputs = model(mels, spk_mels, mels, lens)
nll, con_kl, spk_kl, pro_kl, pro_reg, pit_kl, ene_kl = model.loss_fn(outputs, mels, lf0_q, ene_q, lens)
con_c = np.clip(con_mi / stop_step * global_step, 0, con_mi)
spk_c = np.clip(spk_mi / stop_step * global_step, 0, spk_mi)
pro_c = np.clip(pro_mi / stop_step * global_step, 0, pro_mi)
loss = (nll + con_gamma * (con_kl - con_c).abs()
+ spk_gamma * (spk_kl - spk_c).abs()
+ pro_gamma * pro_kl.abs() + pro_reg_w * (pro_reg - pro_c).abs())
loss.backward()
optim.step()
if global_step % log_step == 0:
losses = [nll.item(), con_kl.item(), spk_kl.item(), pro_kl.item(),
pro_reg.item(), pit_kl.item(), ene_kl.item()]
message1 = "Step {}/{}, ".format(global_step, total_step)
message2 = "NLL: {:.3f}, con-kl: {:.3f}, spk-kl: {:.3f}," \
" pro-kl: {:.3f}, pro-reg: {:.3f}, pit-kl: {:.3f}, ene-kl: {:.3f}".format(*losses)
with open(os.path.join(train_log_path, "log.txt"), "a") as f:
f.write(message1 + message2 + "\n")
print(message1 + message2)
log(train_logger, global_step, losses=losses, model=args.mdl)
if global_step % val_step == 0:
model.eval()
val_nll, val_con_kl, val_spk_kl, val_pro_kl, val_pro_reg, val_pit_kl, val_ene_kl = evaluate_step(model, val_loader)
log(val_logger, step=global_step, model=args.mdl,
losses=[val_nll, val_con_kl, val_spk_kl, val_pro_kl,
val_pro_reg, val_pit_kl, val_ene_kl])
message = "Val-NLL: {:.3f}, val-con-kl: {:.3f}, val-spk-kl: {:.3f}," \
" val-pro-kl: {:.3f}, val-pro-reg: {:.3f} val-pit-kl: {:.3f}, val-ene-kl: {:.3f}".format(
val_nll, val_con_kl, val_spk_kl, val_pro_kl, val_pro_reg, val_pit_kl, val_ene_kl)
with open(os.path.join(val_log_path, "log.txt"), "a") as f:
f.write(message + "\n")
print(message)
val_losses.append(
[val_nll, val_con_kl, val_spk_kl, val_pro_kl, val_pro_reg, val_pit_kl, val_ene_kl])
# reconstruction
_, val_mels, val_spk_mels, _, _, val_lens = next(iter(val_single_sampler))
_, tst_mels, tst_spk_mels, _, _, tst_lens = next(iter(tst_single_sampler))
val_mels = val_mels.to(device)
tst_mels = tst_mels.to(device)
val_spk_mels = val_spk_mels.to(device)
tst_spk_mels = tst_spk_mels.to(device)
tst_pro_mels = tst_mels[:, :, :val_lens.detach().cpu().numpy()[0]]
val_lens = val_lens.to(device)
tst_lens = tst_lens.to(device)
with torch.no_grad():
pro_cvt = model.pitch_shift(
val_mels, val_spk_mels, val_lens, shift=1)['x_hat']
spk_cvt = model(
val_mels, tst_spk_mels, val_mels, val_lens)['x_hat']
src_fig, src_wav = synth_one_sample(
val_mels, val_lens, vocoder, model_config, preprocess_config)
log(val_logger, step=global_step, fig=src_fig,
tag="Val/step-{}-0-src_mel".format(global_step))
log(val_logger, step=global_step, audio=src_wav, sampling_rate=sampling_rate,
tag="Val/step-{}-0-src_wav".format(global_step))
pro_cvt_fig, pro_cvt_wav = synth_one_sample(
pro_cvt, val_lens, vocoder, model_config, preprocess_config)
log(val_logger, step=global_step, fig=pro_cvt_fig,
tag="Val/step-{}-1-pit-cvt_mel".format(global_step))
log(val_logger, step=global_step, audio=pro_cvt_wav, sampling_rate=sampling_rate,
tag="Val/step-{}-1-pit-cvt_wav".format(global_step))
spk_cvt_fig, spk_cvt_wav = synth_one_sample(
spk_cvt, val_lens, vocoder, model_config, preprocess_config)
log(val_logger, step=global_step, fig=spk_cvt_fig,
tag="Val/step-{}-1-spk-cvt_mel".format(global_step))
log(val_logger, step=global_step, audio=spk_cvt_wav, sampling_rate=sampling_rate,
tag="Val/step-{}-1-spk-cvt_wav".format(global_step))
tgt_fig, tgt_wav = synth_one_sample(
tst_pro_mels, tst_lens, vocoder, model_config, preprocess_config)
log(val_logger, step=global_step, fig=tgt_fig,
tag="Val/step-{}-2-tgt_mel".format(global_step))
log(val_logger, step=global_step, audio=tgt_wav, sampling_rate=sampling_rate,
tag="Val/step-{}-2-tgt_wav".format(global_step))
model.train()
if global_step % save_step == 0:
torch.save(
{"model": model.state_dict(), "optimizer": optim.state_dict()},
os.path.join(
exp_name, train_config["path"]["ckpt_path"], "{}.pth.tar".format(global_step)))
global_step += 1
if global_step > total_step:
avg_val_losses = np.array(val_losses).mean(axis=0).tolist()
print("Overall: Val-NLL: {:.3f}, val-con-kl: {:.3f},"
" val-spk-kl: {:.3f}, val-pro-kl: {:.3f},"
" val-pro-reg: {:.3f} val-pit-kl: {:.3f}, val-ene-kl: {:.3f}".format(*avg_val_losses))
quit()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--restore_step", type=int, default=0)
parser.add_argument("--mdl", type=str, choices=['CCDPJ', 'DCDPJ'], help='model type')
parser.add_argument(
"-p", "--preprocess_config", type=str, required=True, help="path to preprocess.yaml")
parser.add_argument(
"-m", "--model_config", type=str, required=True, help="path to model.yaml")
parser.add_argument(
"-t", "--train_config", type=str, required=True, help="path to train.yaml")
parser.add_argument("--con_mi", type=float, default=None)
parser.add_argument("--spk_mi", type=float, default=None)
args = parser.parse_args()
# Read Config
preprocess_config = yaml.load(open(args.preprocess_config, "r"), Loader=yaml.FullLoader)
model_config = yaml.load(open(args.model_config, "r"), Loader=yaml.FullLoader)
train_config = yaml.load(open(args.train_config, "r"), Loader=yaml.FullLoader)
configs = (preprocess_config, model_config, train_config)
main(args, configs)