-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathconnected_layer.c
184 lines (157 loc) · 5.15 KB
/
connected_layer.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
#include "connected_layer.h"
#include "convolutional_layer.h"
#include "batchnorm_layer.h"
#include "utils.h"
#include "blas.h"
#include "gemm.h"
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
layer make_connected_layer(int batch, int inputs, int outputs, ACTIVATION activation, int batch_normalize, int adam)
{
int i;
layer l = {0};
l.learning_rate_scale = 1;
l.type = CONNECTED;
l.inputs = inputs;
l.outputs = outputs;
l.batch=batch;
l.batch_normalize = batch_normalize;
l.h = 1;
l.w = 1;
l.c = inputs;
l.out_h = 1;
l.out_w = 1;
l.out_c = outputs;
l.output = calloc(batch*outputs, sizeof(float));
l.delta = calloc(batch*outputs, sizeof(float));
l.weight_updates = calloc(inputs*outputs, sizeof(float));
l.bias_updates = calloc(outputs, sizeof(float));
l.weights = calloc(outputs*inputs, sizeof(float));
l.biases = calloc(outputs, sizeof(float));
l.forward = forward_connected_layer;
l.backward = backward_connected_layer;
l.update = update_connected_layer;
//float scale = 1./sqrt(inputs);
float scale = sqrt(2./inputs);
for(i = 0; i < outputs*inputs; ++i){
l.weights[i] = scale*rand_uniform(-1, 1);
}
for(i = 0; i < outputs; ++i){
l.biases[i] = 0;
}
if(adam){
l.m = calloc(l.inputs*l.outputs, sizeof(float));
l.v = calloc(l.inputs*l.outputs, sizeof(float));
l.bias_m = calloc(l.outputs, sizeof(float));
l.scale_m = calloc(l.outputs, sizeof(float));
l.bias_v = calloc(l.outputs, sizeof(float));
l.scale_v = calloc(l.outputs, sizeof(float));
}
if(batch_normalize){
l.scales = calloc(outputs, sizeof(float));
l.scale_updates = calloc(outputs, sizeof(float));
for(i = 0; i < outputs; ++i){
l.scales[i] = 1;
}
l.mean = calloc(outputs, sizeof(float));
l.mean_delta = calloc(outputs, sizeof(float));
l.variance = calloc(outputs, sizeof(float));
l.variance_delta = calloc(outputs, sizeof(float));
l.rolling_mean = calloc(outputs, sizeof(float));
l.rolling_variance = calloc(outputs, sizeof(float));
l.x = calloc(batch*outputs, sizeof(float));
l.x_norm = calloc(batch*outputs, sizeof(float));
}
l.activation = activation;
fprintf(stderr, "connected %4d -> %4d\n", inputs, outputs);
return l;
}
void update_connected_layer(layer l, update_args a)
{
float learning_rate = a.learning_rate*l.learning_rate_scale;
float momentum = a.momentum;
float decay = a.decay;
int batch = a.batch;
axpy_cpu(l.outputs, learning_rate/batch, l.bias_updates, 1, l.biases, 1);
scal_cpu(l.outputs, momentum, l.bias_updates, 1);
if(l.batch_normalize){
axpy_cpu(l.outputs, learning_rate/batch, l.scale_updates, 1, l.scales, 1);
scal_cpu(l.outputs, momentum, l.scale_updates, 1);
}
axpy_cpu(l.inputs*l.outputs, -decay*batch, l.weights, 1, l.weight_updates, 1);
axpy_cpu(l.inputs*l.outputs, learning_rate/batch, l.weight_updates, 1, l.weights, 1);
scal_cpu(l.inputs*l.outputs, momentum, l.weight_updates, 1);
}
void forward_connected_layer(layer l, network net)
{
fill_cpu(l.outputs*l.batch, 0, l.output, 1);
int m = l.batch;
int k = l.inputs;
int n = l.outputs;
float *a = net.input;
float *b = l.weights;
float *c = l.output;
gemm(0,1,m,n,k,1,a,k,b,k,1,c,n);
if(l.batch_normalize){
forward_batchnorm_layer(l, net);
} else {
add_bias(l.output, l.biases, l.batch, l.outputs, 1);
}
activate_array(l.output, l.outputs*l.batch, l.activation);
}
void backward_connected_layer(layer l, network net)
{
gradient_array(l.output, l.outputs*l.batch, l.activation, l.delta);
if(l.batch_normalize){
backward_batchnorm_layer(l, net);
} else {
backward_bias(l.bias_updates, l.delta, l.batch, l.outputs, 1);
}
int m = l.outputs;
int k = l.batch;
int n = l.inputs;
float *a = l.delta;
float *b = net.input;
float *c = l.weight_updates;
gemm(1,0,m,n,k,1,a,m,b,n,1,c,n);
m = l.batch;
k = l.outputs;
n = l.inputs;
a = l.delta;
b = l.weights;
c = net.delta;
if(c) gemm(0,0,m,n,k,1,a,k,b,n,1,c,n);
}
void denormalize_connected_layer(layer l)
{
int i, j;
for(i = 0; i < l.outputs; ++i){
float scale = l.scales[i]/sqrt(l.rolling_variance[i] + .000001);
for(j = 0; j < l.inputs; ++j){
l.weights[i*l.inputs + j] *= scale;
}
l.biases[i] -= l.rolling_mean[i] * scale;
l.scales[i] = 1;
l.rolling_mean[i] = 0;
l.rolling_variance[i] = 1;
}
}
void statistics_connected_layer(layer l)
{
if(l.batch_normalize){
printf("Scales ");
print_statistics(l.scales, l.outputs);
/*
printf("Rolling Mean ");
print_statistics(l.rolling_mean, l.outputs);
printf("Rolling Variance ");
print_statistics(l.rolling_variance, l.outputs);
*/
}
printf("Biases ");
print_statistics(l.biases, l.outputs);
printf("Weights ");
print_statistics(l.weights, l.outputs);
}