diff --git a/src/config/aiModels/sensenova.ts b/src/config/aiModels/sensenova.ts index 6b9f0d59297b6..b1ebed6b3c5f2 100644 --- a/src/config/aiModels/sensenova.ts +++ b/src/config/aiModels/sensenova.ts @@ -4,6 +4,62 @@ import { AIChatModelCard } from '@/types/aiModel'; // https://www.sensecore.cn/help/docs/model-as-a-service/nova/release const sensenovaChatModels: AIChatModelCard[] = [ + { + abilities: { + reasoning: true, + vision: true, + }, + contextWindowTokens: 131_072, + description: + '兼顾视觉、语言深度推理,实现慢思考和深度推理,呈现完整的思维链过程。', + displayName: 'SenseNova V6 Reasoner', + enabled: true, + id: 'SenseNova-V6-Reasoner', + pricing: { + currency: 'CNY', + input: 4, + output: 16, + }, + releasedAt: '2025-04-14', + type: 'chat', + }, + { + abilities: { + reasoning: true, + vision: true, + }, + contextWindowTokens: 131_072, + description: + '实现图片、文本、视频能力的原生统一,突破传统多模态分立局限,在多模基础能力、语言基础能力等核心维度全面领先,文理兼修,在多项测评中多次位列国内外第一梯队水平。', + displayName: 'SenseNova V6 Turbo', + enabled: true, + id: 'SenseNova-V6-Turbo', + pricing: { + currency: 'CNY', + input: 1.5, + output: 4.5, + }, + releasedAt: '2025-04-14', + type: 'chat', + }, + { + abilities: { + vision: true, + }, + contextWindowTokens: 131_072, + description: + '实现图片、文本、视频能力的原生统一,突破传统多模态分立局限,在OpenCompass和SuperCLUE评测中斩获双冠军。', + displayName: 'SenseNova V6 Pro', + enabled: true, + id: 'SenseNova-V6-Pro', + pricing: { + currency: 'CNY', + input: 9, + output: 3, + }, + releasedAt: '2025-04-14', + type: 'chat', + }, { abilities: { functionCall: true, @@ -12,7 +68,6 @@ const sensenovaChatModels: AIChatModelCard[] = [ description: '是基于V5.5的最新版本,较上版本在中英文基础能力,聊天,理科知识, 文科知识,写作,数理逻辑,字数控制 等几个维度的表现有显著提升。', displayName: 'SenseChat 5.5 1202', - enabled: true, id: 'SenseChat-5-1202', pricing: { currency: 'CNY', @@ -30,7 +85,6 @@ const sensenovaChatModels: AIChatModelCard[] = [ description: '是最新的轻量版本模型,达到全量模型90%以上能力,显著降低推理成本。', displayName: 'SenseChat Turbo 1202', - enabled: true, id: 'SenseChat-Turbo-1202', pricing: { currency: 'CNY', @@ -48,7 +102,6 @@ const sensenovaChatModels: AIChatModelCard[] = [ description: '最新版本模型 (V5.5),128K上下文长度,在数学推理、英文对话、指令跟随以及长文本理解等领域能力显著提升,比肩GPT-4o。', displayName: 'SenseChat 5.5', - enabled: true, id: 'SenseChat-5', pricing: { currency: 'CNY', @@ -58,10 +111,12 @@ const sensenovaChatModels: AIChatModelCard[] = [ type: 'chat', }, { + abilities: { + vision: true, + }, contextWindowTokens: 32_768, description: '最新版本模型 (V5.5),支持多图的输入,全面实现模型基础能力优化,在对象属性识别、空间关系、动作事件识别、场景理解、情感识别、逻辑常识推理和文本理解生成上都实现了较大提升。', displayName: 'SenseChat 5.5 Vision', - enabled: true, id: 'SenseChat-Vision', pricing: { currency: 'CNY', @@ -78,7 +133,6 @@ const sensenovaChatModels: AIChatModelCard[] = [ contextWindowTokens: 32_768, description: '适用于快速问答、模型微调场景', displayName: 'SenseChat 5.0 Turbo', - enabled: true, id: 'SenseChat-Turbo', pricing: { currency: 'CNY', @@ -160,6 +214,67 @@ const sensenovaChatModels: AIChatModelCard[] = [ }, type: 'chat', }, + { + contextWindowTokens: 32_768, + description: + 'DeepSeek-V3 是一款由深度求索公司自研的MoE模型。DeepSeek-V3 多项评测成绩超越了 Qwen2.5-72B 和 Llama-3.1-405B 等其他开源模型,并在性能上和世界顶尖的闭源模型 GPT-4o 以及 Claude-3.5-Sonnet 不分伯仲。', + displayName: 'DeepSeek V3', + id: 'DeepSeek-V3', + pricing: { + currency: 'CNY', + input: 2, + output: 8, + }, + type: 'chat', + }, + { + abilities: { + reasoning: true, + }, + contextWindowTokens: 32_768, + description: + 'DeepSeek-R1 在后训练阶段大规模使用了强化学习技术,在仅有极少标注数据的情况下,极大提升了模型推理能力。在数学、代码、自然语言推理等任务上,性能比肩 OpenAI o1 正式版。', + displayName: 'DeepSeek R1', + id: 'DeepSeek-R1', + pricing: { + currency: 'CNY', + input: 4, + output: 16, + }, + type: 'chat', + }, + { + abilities: { + reasoning: true, + }, + contextWindowTokens: 32_768, + description: + 'DeepSeek-R1-Distill 模型是在开源模型的基础上通过微调训练得到的,训练过程中使用了由 DeepSeek-R1 生成的样本数据。', + displayName: 'DeepSeek R1 Distill Qwen 14B', + id: 'DeepSeek-R1-Distill-Qwen-14B', + pricing: { + currency: 'CNY', + input: 0, + output: 0, + }, + type: 'chat', + }, + { + abilities: { + reasoning: true, + }, + contextWindowTokens: 8192, + description: + 'DeepSeek-R1-Distill 模型是在开源模型的基础上通过微调训练得到的,训练过程中使用了由 DeepSeek-R1 生成的样本数据。', + displayName: 'DeepSeek R1 Distill Qwen 32B', + id: 'DeepSeek-R1-Distill-Qwen-32B', + pricing: { + currency: 'CNY', + input: 0, + output: 0, + }, + type: 'chat', + }, ]; export const allModels = [...sensenovaChatModels]; diff --git a/src/libs/agent-runtime/sensenova/index.ts b/src/libs/agent-runtime/sensenova/index.ts index e24ff58c49d47..d7531c4b51184 100644 --- a/src/libs/agent-runtime/sensenova/index.ts +++ b/src/libs/agent-runtime/sensenova/index.ts @@ -1,6 +1,8 @@ import { ModelProvider } from '../types'; import { LobeOpenAICompatibleFactory } from '../utils/openaiCompatibleFactory'; +import { convertSenseNovaMessage } from '../utils/sensenovaHelpers'; + import type { ChatModelCard } from '@/types/llm'; export interface SenseNovaModelCard { @@ -11,7 +13,7 @@ export const LobeSenseNovaAI = LobeOpenAICompatibleFactory({ baseURL: 'https://api.sensenova.cn/compatible-mode/v1', chatCompletion: { handlePayload: (payload) => { - const { frequency_penalty, temperature, top_p, ...rest } = payload; + const { frequency_penalty, messages, model, temperature, top_p, ...rest } = payload; return { ...rest, @@ -19,6 +21,12 @@ export const LobeSenseNovaAI = LobeOpenAICompatibleFactory({ frequency_penalty !== undefined && frequency_penalty > 0 && frequency_penalty <= 2 ? frequency_penalty : undefined, + messages: messages.map((message) => + message.role !== 'user' || !/^Sense(Nova-V6|Chat-Vision)/.test(model) + ? message + : { ...message, content: convertSenseNovaMessage(message.content) } + ) as any[], + model, stream: true, temperature: temperature !== undefined && temperature > 0 && temperature <= 2 @@ -35,12 +43,17 @@ export const LobeSenseNovaAI = LobeOpenAICompatibleFactory({ const { LOBE_DEFAULT_MODEL_LIST } = await import('@/config/aiModels'); const functionCallKeywords = [ - 'deepseek-v3', 'sensechat-5', ]; + const visionKeywords = [ + 'vision', + 'sensenova-v6', + ]; + const reasoningKeywords = [ - 'deepseek-r1' + 'deepseek-r1', + 'sensenova-v6', ]; client.baseURL = 'https://api.sensenova.cn/v1/llm'; @@ -66,7 +79,7 @@ export const LobeSenseNovaAI = LobeOpenAICompatibleFactory({ || knownModel?.abilities?.reasoning || false, vision: - model.id.toLowerCase().includes('vision') + visionKeywords.some(keyword => model.id.toLowerCase().includes(keyword)) || knownModel?.abilities?.vision || false, }; diff --git a/src/libs/agent-runtime/utils/sensenovaHelpers.test.ts b/src/libs/agent-runtime/utils/sensenovaHelpers.test.ts new file mode 100644 index 0000000000000..d17c4ddd54df3 --- /dev/null +++ b/src/libs/agent-runtime/utils/sensenovaHelpers.test.ts @@ -0,0 +1,108 @@ +import { describe, expect, it } from 'vitest'; +import { convertSenseNovaMessage } from './sensenovaHelpers'; + +describe('convertSenseNovaMessage', () => { + it('should convert string content to text type array', () => { + const content = 'Hello world'; + const result = convertSenseNovaMessage(content); + + expect(result).toEqual([{ type: 'text', text: 'Hello world' }]); + }); + + it('should handle array content with text type', () => { + const content = [ + { type: 'text', text: 'Hello world' } + ]; + const result = convertSenseNovaMessage(content); + + expect(result).toEqual([{ type: 'text', text: 'Hello world' }]); + }); + + it('should convert image_url with base64 format to image_base64', () => { + const content = [ + { type: 'image_url', image_url: { url: '' } } + ]; + const result = convertSenseNovaMessage(content); + + expect(result).toEqual([ + { type: 'image_base64', image_base64: 'ABCDEF123456' } + ]); + }); + + it('should keep image_url format for non-base64 urls', () => { + const content = [ + { type: 'image_url', image_url: { url: 'https://example.com/image.jpg' } } + ]; + const result = convertSenseNovaMessage(content); + + expect(result).toEqual([ + { type: 'image_url', image_url: 'https://example.com/image.jpg' } + ]); + }); + + it('should handle mixed content types', () => { + const content = [ + { type: 'text', text: 'Hello world' }, + { type: 'image_url', image_url: { url: '' } }, + { type: 'image_url', image_url: { url: 'https://example.com/image.jpg' } } + ]; + const result = convertSenseNovaMessage(content); + + expect(result).toEqual([ + { type: 'text', text: 'Hello world' }, + { type: 'image_base64', image_base64: 'ABCDEF123456' }, + { type: 'image_url', image_url: 'https://example.com/image.jpg' } + ]); + }); + + it('should filter out invalid items', () => { + const content = [ + { type: 'text', text: 'Hello world' }, + { type: 'unknown', value: 'should be filtered' }, + { type: 'image_url', image_url: { notUrl: 'missing url field' } } + ]; + const result = convertSenseNovaMessage(content); + + expect(result).toEqual([ + { type: 'text', text: 'Hello world' } + ]); + }); + + it('should handle the example input format correctly', () => { + const messages = [ + { + content: [ + { + content: "Hi", + role: "user" + }, + { + image_url: { + detail: "auto", + url: "" + }, + type: "image_url" + } + ], + role: "user" + } + ]; + + // This is simulating how you might use convertSenseNovaMessage with the example input + // Note: The actual function only converts the content part, not the entire messages array + const content = messages[0].content; + + // This is how the function would be expected to handle a mixed array like this + // However, the actual test would need to be adjusted based on how your function + // is intended to handle this specific format with nested content objects + const result = convertSenseNovaMessage([ + { type: 'text', text: "Hi" }, + { type: 'image_url', image_url: { url: "" } } + ]); + + expect(result).toEqual([ + { type: 'text', text: "Hi" }, + { type: 'image_base64', image_base64: "ABCDEF123456" } + ]); + }); +}); diff --git a/src/libs/agent-runtime/utils/sensenovaHelpers.ts b/src/libs/agent-runtime/utils/sensenovaHelpers.ts new file mode 100644 index 0000000000000..7c622940e8eac --- /dev/null +++ b/src/libs/agent-runtime/utils/sensenovaHelpers.ts @@ -0,0 +1,30 @@ +export const convertSenseNovaMessage = (content: any) => { + + // 如果为单条 string 类 content,则格式转换为 text 类 + if (typeof content === 'string') { + return [{ text: content, type: 'text' }]; + } + + // 如果内容包含图片内容,则需要对 array 类 content,进行格式转换 + return content + ?.map((item: any) => { + // 如果为 content,则格式转换为 text 类 + if (item.type === 'text') return item; + + // 如果为 image_url,则格式转换为 image_url 类 + if (item.type === 'image_url' && item.image_url?.url) { + const url = item.image_url.url; + + // 如果 image_url 为 base64 格式,则返回 image_base64 类,否则返回 image_url 类 + return url.startsWith('data:image/jpeg;base64') + ? { + image_base64: url.split(',')[1], + type: 'image_base64', + } + : { image_url: url, type: 'image_url' }; + } + + return null; + }) + .filter(Boolean); +};