-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathclassification.py
307 lines (263 loc) · 11.7 KB
/
classification.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
import argparse
import evaluate
import json
import numpy as np
import random
import os
import torch
from datasets import Dataset, DatasetDict, concatenate_datasets
from llm2vec import LLM2Vec
from peft import PeftModel
from transformers import (
AutoConfig,
AutoModel,
AutoModelForSequenceClassification,
AutoTokenizer,
Trainer,
TrainingArguments,
)
class LLM2VecCollator:
def __init__(self, model):
self.model = model
def __call__(self, batch):
num_texts = len(batch)
texts = []
labels = []
for example in batch:
text = self.model.prepare_for_tokenization(example["text"])
texts.append(text)
labels.append(example["target"])
labels = torch.tensor(labels)
inputs = self.model.tokenize(texts)
inputs["labels"] = labels
return inputs
class SequenceClassificationCollator:
def __init__(self, tokenizer):
self.tokenizer = tokenizer
def __call__(self, batch):
num_texts = len(batch)
texts = []
labels = []
for example in batch:
texts.append(example["text"])
labels.append(example["target"])
labels = torch.tensor(labels)
inputs = self.tokenizer(texts, truncation=True, padding="max_length", max_length=512, return_tensors="pt")
inputs["labels"] = labels
return inputs
def load_dataset(args):
all_responses = [list() for _ in range(len(args.response_paths))]
for label, response_path in enumerate(args.response_paths):
with open(response_path, "r") as f:
data = json.load(f)
for i in range(len(data)):
response = data[i][-1]["content"]
all_responses[label].append({"text": response, "target": label})
all_train_datasets = []
all_test_datasets = []
for label in range(len(args.response_paths)):
dataset = Dataset.from_list([each for each in all_responses[label]])
# the seed ensures that the train and test splits are the same for each label
dataset = dataset.train_test_split(train_size=args.num_train_samples, test_size=args.num_test_samples, seed=42)
all_train_datasets.append(dataset['train'])
all_test_datasets.append(dataset['test'])
combined_train_dataset = concatenate_datasets(all_train_datasets)
combined_train_dataset = combined_train_dataset.shuffle(seed=42)
combined_test_dataset = concatenate_datasets(all_test_datasets)
combined_test_dataset = combined_test_dataset.shuffle(seed=42)
dataset = DatasetDict({
'train': combined_train_dataset,
'test': combined_test_dataset
})
print("Number of training samples", len(dataset['train']))
print("Number of testing samples", len(dataset['test']))
return dataset
def load_model(args):
classifier_to_hf_name = {
"bert": "bert-base-uncased",
"t5": "google-t5/t5-base",
"gpt2": "openai-community/gpt2",
"llm2vec": "McGill-NLP/LLM2Vec-Meta-Llama-3-8B-Instruct-mntp",
}
tokenizer = AutoTokenizer.from_pretrained(classifier_to_hf_name[args.classifier], trust_remote_code=True)
if args.classifier == "llm2vec":
config = AutoConfig.from_pretrained(
classifier_to_hf_name[args.classifier],
trust_remote_code=True,
)
model = AutoModel.from_pretrained(
classifier_to_hf_name[args.classifier],
config=config,
torch_dtype=torch.bfloat16,
device_map="cuda",
trust_remote_code=True,
)
model = PeftModel.from_pretrained(
model,
classifier_to_hf_name[args.classifier],
torch_dtype=torch.bfloat16,
device_map="cuda",
trust_remote_code=True,
)
model = model.merge_and_unload()
model = PeftModel.from_pretrained(
model,
f"{classifier_to_hf_name[args.classifier]}-supervised",
is_trainable=True,
torch_dtype=torch.bfloat16,
device_map="cuda",
trust_remote_code=True,
)
# check the trainable parameters
model.print_trainable_parameters()
model = LLM2Vec(model, tokenizer, pooling_mode="mean", max_length=512)
hidden_size = list(model.modules())[-1].weight.shape[0]
model.head = torch.nn.Linear(hidden_size, len(args.response_paths), dtype=torch.bfloat16)
old_forward = model.forward
# hacky way to turn LLM2Vec into a sequence classification model compatible with the HF Trainer
def forward(**kwargs):
if "labels" in kwargs:
kwargs.pop("labels")
return {"logits": model.head(old_forward(kwargs).to(torch.bfloat16))}
model.forward = forward
else:
# use the sequence classification model from huggingface
model = AutoModelForSequenceClassification.from_pretrained(
classifier_to_hf_name[args.classifier],
num_labels=len(args.response_paths),
torch_dtype=torch.bfloat16,
device_map="cuda",
trust_remote_code=True
)
# check the trainable parameters
num_trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
# add a comma between every three digits
print(f"trainable params: {'{:,}'.format(num_trainable_params)} || all params: {'{:,}'.format(model.num_parameters())} || trainable%: {num_trainable_params / model.num_parameters():.4f}")
if args.classifier == "bert":
tokenizer.add_special_tokens({"pad_token": "[PAD]"})
elif args.classifier == "gpt2":
tokenizer.pad_token_id = tokenizer.eos_token_id
tokenizer.pad_token = tokenizer.eos_token
elif args.classifier == "t5":
# t5 has defined its padding token id
# https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5Tokenizer
pass
model.config.pad_token_id = model.config.eos_token_id
return model, tokenizer
def classification(args):
# load dataset
dataset = load_dataset(args)
# load model
model, tokenizer = load_model(args)
# createdata collator
if args.classifier == "llm2vec":
data_collator = LLM2VecCollator(model)
else:
data_collator = SequenceClassificationCollator(tokenizer)
# compute loss
class SequenceClassificationTrainer(Trainer):
def compute_loss(self, model, inputs, return_outputs=False, **kwargs):
labels = inputs.pop("labels")
outputs = model.forward(**inputs)
logits = outputs.get("logits")
loss_fct = torch.nn.CrossEntropyLoss()
loss = loss_fct(logits.view(-1, len(args.response_paths)), labels.view(-1))
return (loss, outputs) if return_outputs else loss
def save_model(self, output_dir, _internal_call=False):
super().save_model(output_dir)
if args.classifier == "llm2vec":
torch.save(self.model.head.state_dict(), os.path.join(output_dir, "head.pt"))
def _load_from_checkpoint(self, checkpoint, model=None):
super()._load_from_checkpoint(checkpoint, model=model)
if args.classifier == "llm2vec":
self.model.head.load_state_dict(torch.load(os.path.join(checkpoint, "head.pt")))
def compute_metrics(eval_pred):
logits, labels = eval_pred
predictions = np.argmax(logits, axis=-1)
accuracy_metric = evaluate.load("accuracy")
accuracy = accuracy_metric.compute(predictions=predictions, references=labels)["accuracy"]
return {"accuracy": accuracy}
if args.eval_only:
print("Evaluating the model...")
training_args = TrainingArguments(
output_dir = args.output_dir,
do_train = False,
do_eval = True,
per_device_eval_batch_size = args.batch_size,
remove_unused_columns = False,
label_names = ["labels"],
)
trainer = SequenceClassificationTrainer(
model = model,
args = training_args,
train_dataset = dataset['train'],
eval_dataset = dataset["test"],
data_collator = data_collator,
compute_metrics = compute_metrics,
)
trainer._load_from_checkpoint(args.resume_from_checkpoint)
eval_result = trainer.evaluate(ignore_keys=["past_key_values", "encoder_last_hidden_state"] if args.classifier == "t5" else None)
print(eval_result)
return
# training arguments
training_args = TrainingArguments(
output_dir = args.output_dir,
learning_rate = args.lr,
lr_scheduler_type = "cosine",
warmup_ratio = args.warmup_ratio,
max_grad_norm = args.gradient_clipping,
per_device_train_batch_size = args.batch_size,
per_device_eval_batch_size = args.batch_size,
num_train_epochs = args.epochs,
weight_decay = args.weight_decay,
eval_strategy = "epoch",
report_to = "tensorboard",
save_strategy = "epoch",
save_total_limit = 1,
remove_unused_columns = False,
bf16 = True,
gradient_checkpointing = True,
label_names = ["labels"],
)
trainer = SequenceClassificationTrainer(
model = model,
args = training_args,
train_dataset = dataset['train'],
eval_dataset = dataset["test"],
data_collator = data_collator,
compute_metrics = compute_metrics,
)
trainer.train(
resume_from_checkpoint=args.resume_from_checkpoint,
ignore_keys_for_eval=["past_key_values", "encoder_last_hidden_state"] if args.classifier == "t5" else None)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# miscelaneous
parser.add_argument('--seed',type=int, default=42, help="the seed that controls the randomness")
parser.add_argument('--device', type=str, default='cuda', help="the device to use for training / evaluation")
# data
parser.add_argument("--response_paths", nargs='+', help="a list of paths to load the generated responses from")
parser.add_argument("--num_train_samples", type=int, default=10_000, help="the number of training samples")
parser.add_argument("--num_test_samples", type=int, default=1_000, help="the number of testing samples")
# classifer
parser.add_argument('--classifier', type=str, default="llm2vec",
choices=["llm2vec", "bert", "t5", "gpt2"],
help='the text embedding model to perform sequence classification')
# training hyperparameters
parser.add_argument("--epochs", type=int, default=3, help="the number of epochs")
parser.add_argument("--batch_size", type=int, default=8, help="the batch size")
parser.add_argument('--lr', default=5e-5, type=float, help="the learning rate")
parser.add_argument("--gradient_clipping", type=float, default=0.3, help="the gradient clipping")
parser.add_argument("--weight_decay", type=float, default=0.001, help="the weight decay")
parser.add_argument("--warmup_ratio", type=float, default=0.1, help="the number of warmup steps")
# evaluation
parser.add_argument("--eval_only", action="store_true", default=False, help="only evaluate the model")
parser.add_argument('--resume_from_checkpoint', type=str, default=None, help="the checkpoint to evaluate")
# output related
parser.add_argument("--output_dir", type=str, default=None, help="the directory to save the output")
args = parser.parse_args()
print(args)
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
classification(args)