-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathgenerate_responses.py
218 lines (188 loc) · 8.64 KB
/
generate_responses.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
import argparse
from anthropic import Anthropic
from datasets import load_dataset
import google.generativeai as genai
import json
import numpy as np
from openai import OpenAI
import os
from tqdm import tqdm
import random
import torch
from vllm import LLM, SamplingParams
def load_vllm_model(args):
model_name_to_hf_name = {
"Phi-4": "microsoft/phi-4",
"Llama3.1-8b-it": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"Gemma2-9b-it": "google/gemma-2-9b-it",
"Qwen2.5-7b-it": "Qwen/Qwen2.5-7B-Instruct",
"Mistral-7b-v3-it": "mistralai/Mistral-7B-Instruct-v0.3",
"Llama3.1-8b": "meta-llama/Meta-Llama-3.1-8B",
"Gemma2-9b": "google/gemma-2-9b",
"Qwen2.5-7b": "Qwen/Qwen2.5-7B",
"Mistral-7b-v3": "mistralai/Mistral-7B-v0.3",
}
model = LLM(model_name_to_hf_name[args.model], tensor_parallel_size=args.num_gpus, trust_remote_code=True)
tokenizer = model.get_tokenizer()
return model, tokenizer
def create_dataset(args):
if args.dataset == "UltraChat":
dataset = load_dataset("HuggingFaceH4/ultrachat_200k", trust_remote_code=True)["train_sft"]
get_prompt = lambda x: x["prompt"]
elif args.dataset == "Cosmopedia":
dataset = load_dataset("HuggingFaceTB/cosmopedia-100k", trust_remote_code=True)["train"]
get_prompt = lambda x: x["prompt"]
elif args.dataset == "LmsysChat":
dataset = load_dataset("lmsys/lmsys-chat-1m", trust_remote_code=True)["train"]
get_prompt = lambda x: x["conversation"][0]["content"]
elif args.dataset == "WildChat":
dataset = load_dataset("allenai/WildChat", trust_remote_code=True)["train"]
get_prompt = lambda x: x["conversation"][0]["content"]
elif args.dataset == "FineWeb":
dataset = load_dataset("HuggingFaceFW/fineweb", name="sample-10BT", split="train", trust_remote_code=True)
get_prompt = lambda x: x["text"]
return dataset, get_prompt
def load_chat_api_model(args):
if args.model == "ChatGPT":
client = OpenAI(api_key=args.api_key)
api_call = lambda x: client.chat.completions.create(
model="gpt-4o-2024-08-06",
messages=[{"role": "user", "content": x}],
max_tokens=args.max_tokens,
).choices[0].message.content
elif args.model == "Claude":
client = Anthropic(api_key=args.api_key)
api_call = lambda x: client.messages.create(
model="claude-3-5-sonnet-20241022",
messages=[{"role": "user", "content": x}],
max_tokens=args.max_tokens,
).content[0].text
elif args.model == "Grok":
client = OpenAI(
api_key=args.api_key,
base_url="https://api.x.ai/v1",
)
api_call = lambda x: client.chat.completions.create(
model="grok-beta",
messages=[{"role": "user", "content": x}],
max_tokens=args.max_tokens,
).choices[0].message.content
elif args.model == "Gemini":
genai.configure(api_key=args.api_key)
model = genai.GenerativeModel("gemini-1.5-pro-002")
api_call = lambda x: model.generate_content(x, generation_config={"max_output_tokens": args.max_tokens}).text
elif args.model == "DeepSeek":
client = OpenAI(
api_key=args.api_key,
base_url="https://api.deepseek.com"
)
api_call = lambda x: client.chat.completions.create(
model="deepseek-chat",
messages=[{"role": "user", "content": x}],
max_tokens=args.max_tokens,
).choices[0].message.content
return api_call
def generate_responses_chat_api(args):
# form api call function
api_call = load_chat_api_model(args)
# load dataset
dataset, get_prompt = create_dataset(args)
# generate responses
data = []
random_indices = random.sample(range(len(dataset)), args.num_samples)
for i in tqdm(random_indices, "Generating responses"):
prompt = get_prompt(dataset[i])
response = api_call(prompt)
data.append([{"role": "user", "content": prompt}, {"role": "assistant", "content": response}])
# save data per generation
with open(args.output_path, "w") as file:
json.dump(data, file)
def generate_responses_instruct_llm(args):
# load model
model, tokenizer = load_vllm_model(args)
# load dataset
dataset, get_prompt = create_dataset(args)
random_indices = random.sample(range(len(dataset)), args.num_samples)
all_prompts = []
data = []
for i in random_indices:
prompt = get_prompt(dataset[i])
data.append([{"role": "user", "content": prompt}])
formatted_prompt = tokenizer.apply_chat_template([{"role": "user", "content": prompt}], tokenize=False, add_generation_prompt=True)
all_prompts.append(formatted_prompt)
outputs = model.generate(
all_prompts,
SamplingParams(
temperature=args.temperature,
max_tokens=1024,
)
)
for i in range(args.num_samples):
response = outputs[i].outputs[0].text
# remove some artifacts
if "mistral" in args.model:
response = response.strip()
elif "gemma" in args.model:
response = response.rstrip('\n')
data[i].append({"role": "assistant", "content": response})
with open(args.output_path, "w") as file:
json.dump(data, file)
def generate_responses_base_llm(args):
model, tokenizer = load_vllm_model(args)
dataset, get_prompt = create_dataset(args)
random_indices = random.sample(range(len(dataset)), args.num_samples)
data = []
all_prompts = []
for i in random_indices:
prompt = get_prompt(dataset[i])
tokens = tokenizer.encode(prompt, padding=False)[:32]
truncated_prompt = tokenizer.decode(tokens, skip_special_tokens=True)
all_prompts.append(truncated_prompt)
data.append([{"role": "user", "content": truncated_prompt}])
outputs = model.generate(
all_prompts,
SamplingParams(
temperature=args.temperature,
repetition_penalty=args.repetition_penalty,
max_tokens=1024,
)
)
for i in range(args.num_samples):
data[i].append({"role": "assistant", "content": outputs[i].outputs[0].text})
with open(args.output_path, "w") as file:
json.dump(data, file)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# miscelaneous
parser.add_argument("--seed", type=int, default=42, help="the seed that controls the randomness")
parser.add_argument("--device", type=str, default="cuda", help="the device to use for generation")
parser.add_argument("--num_gpus", type=int, default=1, help="the number of gpus to use for generation")
parser.add_argument("--api_key", type=str, default=None, help="the api key to use for generation")
# data
parser.add_argument("--dataset", type=str, default="UltraChat",
choices=["UltraChat", "Cosmopedia", "LmsysChat", "WildChat", "FineWeb"],
help="the dataset to generate responses from")
parser.add_argument("--model", type=str, default=None,
choices=["ChatGPT", "Claude", "Grok", "Gemini", "DeepSeek",
"Llama3.1-8b-it", "Gemma2-9b-it", "Qwen2.5-7b-it", "Mistral-7b-v3-it", "Phi-4",
"Llama3.1-8b", "Gemma2-9b", "Qwen2.5-7b", "Mistral-7b-v3"],
help="the model to generate responses from")
parser.add_argument("--num_samples", type=int, default=11_000, help="the number of samples to generate")
parser.add_argument("--output_path", type=str, default=None, help="the path to save the output")
# sampling hyperparameters
parser.add_argument("--temperature", type=float, default=0, help="the temperature of the sampling")
parser.add_argument("--repetition_penalty", type=float, default=1.1, help="the repetition penalty of the sampling")
parser.add_argument("--max_tokens", type=int, default=1024, help="the maximum number of tokens to generate")
args = parser.parse_args()
print(args)
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
os.makedirs(os.path.dirname(args.output_path), exist_ok=True)
if args.model in ["ChatGPT", "Claude", "Grok", "Gemini", "DeepSeek"]:
generate_responses_chat_api(args)
elif args.model in ["Llama3.1-8b-it", "Gemma2-9b-it", "Qwen2.5-7b-it", "Mistral-7b-v3-it", "Phi-4"]:
generate_responses_instruct_llm(args)
else:
assert args.dataset == "FineWeb"
generate_responses_base_llm(args)