forked from pandas-dev/pandas-stubs
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_frame.py
3820 lines (3221 loc) · 128 KB
/
test_frame.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
from __future__ import annotations
from collections import defaultdict
from collections.abc import (
Hashable,
Iterable,
Iterator,
Mapping,
MutableMapping,
)
import csv
import datetime
from enum import Enum
import io
import itertools
from pathlib import Path
import string
import sys
from typing import (
TYPE_CHECKING,
Any,
Callable,
Generic,
TypedDict,
TypeVar,
Union,
cast,
)
import numpy as np
import numpy.typing as npt
import pandas as pd
from pandas._testing import ensure_clean
from pandas.core.resample import (
DatetimeIndexResampler,
Resampler,
)
from pandas.core.series import Series
import pytest
from typing_extensions import (
TypeAlias,
assert_never,
assert_type,
)
import xarray as xr
from pandas._libs.missing import NAType
from pandas._libs.tslibs.timestamps import Timestamp
from pandas._typing import Scalar
from tests import (
PD_LTE_22,
TYPE_CHECKING_INVALID_USAGE,
check,
pytest_warns_bounded,
)
from pandas.io.formats.style import Styler
from pandas.io.parsers import TextFileReader
if TYPE_CHECKING:
from pandas.core.frame import _PandasNamedTuple
from pandas.core.series import TimestampSeries
else:
_PandasNamedTuple: TypeAlias = tuple
TimestampSeries: TypeAlias = pd.Series
DF = pd.DataFrame(data={"col1": [1, 2], "col2": [3, 4]})
def getCols(k) -> str:
return string.ascii_uppercase[:k]
def makeStringIndex(k: int = 10) -> pd.Index:
return pd.Index(rands_array(nchars=10, size=k), name=None)
def rands_array(nchars, size: int) -> np.ndarray:
chars = np.array(list(string.ascii_letters + string.digits), dtype=(np.str_, 1))
retval = (
np.random.default_rng(2)
.choice(chars, size=nchars * np.prod(size), replace=True)
.view((np.str_, nchars))
.reshape(size)
)
return retval.astype("O")
def getSeriesData() -> dict[str, pd.Series]:
_N = 30
_K = 4
index = makeStringIndex(_N)
return {
c: pd.Series(np.random.default_rng(i).standard_normal(_N), index=index)
for i, c in enumerate(getCols(_K))
}
def test_types_init() -> None:
pd.DataFrame(data={"col1": [1, 2], "col2": [3, 4]})
pd.DataFrame(data={"col1": [1, 2], "col2": [3, 4]}, index=[2, 1])
pd.DataFrame(data=[[1, 2, 3], [4, 5, 6]])
pd.DataFrame(data=itertools.repeat([1, 2, 3], 3))
pd.DataFrame(data=(range(i) for i in range(5)))
pd.DataFrame(data=[1, 2, 3, 4], dtype=np.int8)
pd.DataFrame(
np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]),
columns=["a", "b", "c"],
dtype=np.int8,
copy=True,
)
check(
assert_type(pd.DataFrame(0, index=[0, 1], columns=[0, 1]), pd.DataFrame),
pd.DataFrame,
)
def test_types_all() -> None:
df = pd.DataFrame([[False, True], [False, False]], columns=["col1", "col2"])
check(assert_type(df.all(), "pd.Series[bool]"), pd.Series, np.bool_)
check(assert_type(df.all(axis=None), bool), np.bool_)
def test_types_any() -> None:
df = pd.DataFrame([[False, True], [False, False]], columns=["col1", "col2"])
check(assert_type(df.any(), "pd.Series[bool]"), pd.Series, np.bool_)
check(assert_type(df.any(axis=None), bool), np.bool_)
def test_types_append() -> None:
df = pd.DataFrame(data={"col1": [1, 2], "col2": [3, 4]})
df2 = pd.DataFrame({"col1": [10, 20], "col2": [30, 40]})
if TYPE_CHECKING_INVALID_USAGE:
res1: pd.DataFrame = df.append(df2) # type: ignore[operator] # pyright: ignore[reportCallIssue]
res2: pd.DataFrame = df.append([1, 2, 3]) # type: ignore[operator] # pyright: ignore[reportCallIssue]
res3: pd.DataFrame = df.append([[1, 2, 3]]) # type: ignore[operator] # pyright: ignore[reportCallIssue]
res4: pd.DataFrame = df.append( # type: ignore[operator] # pyright: ignore[reportCallIssue]
{("a", 1): [1, 2, 3], "b": df2}, ignore_index=True
)
res5: pd.DataFrame = df.append( # type: ignore[operator] # pyright: ignore[reportCallIssue]
{1: [1, 2, 3]}, ignore_index=True
)
res6: pd.DataFrame = df.append( # type: ignore[operator] # pyright: ignore[reportCallIssue]
{1: [1, 2, 3], "col2": [1, 2, 3]}, ignore_index=True
)
res7: pd.DataFrame = df.append( # type: ignore[operator] # pyright: ignore[reportCallIssue]
pd.Series([5, 6]), ignore_index=True
)
res8: pd.DataFrame = df.append( # type: ignore[operator] # pyright: ignore[reportCallIssue]
pd.Series([5, 6], index=["col1", "col2"]), ignore_index=True
)
def test_types_to_csv() -> None:
df = pd.DataFrame(data={"col1": [1, 2], "col2": [3, 4]})
check(assert_type(df.to_csv(), str), str)
with ensure_clean() as path:
df.to_csv(path)
check(assert_type(pd.read_csv(path), pd.DataFrame), pd.DataFrame)
with ensure_clean() as path:
df.to_csv(Path(path))
check(assert_type(pd.read_csv(Path(path)), pd.DataFrame), pd.DataFrame)
# This keyword was added in 1.1.0 https://pandas.pydata.org/docs/whatsnew/v1.1.0.html
with ensure_clean() as path:
df.to_csv(path, errors="replace")
check(assert_type(pd.read_csv(path), pd.DataFrame), pd.DataFrame)
# Testing support for binary file handles, added in 1.2.0 https://pandas.pydata.org/docs/whatsnew/v1.2.0.html
df.to_csv(io.BytesIO(), encoding="utf-8", compression="gzip")
# Testing support for binary file handles, added in 1.2.0 https://pandas.pydata.org/docs/whatsnew/v1.2.0.html
df.to_csv(io.BytesIO(), quoting=csv.QUOTE_ALL, encoding="utf-8", compression="gzip")
if sys.version_info >= (3, 12):
with ensure_clean() as path:
df.to_csv(path, quoting=csv.QUOTE_STRINGS)
with ensure_clean() as path:
df.to_csv(path, quoting=csv.QUOTE_NOTNULL)
def test_types_to_csv_when_path_passed() -> None:
df = pd.DataFrame(data={"col1": [1, 2], "col2": [3, 4]})
with ensure_clean() as file:
path = Path(file)
df.to_csv(path)
check(assert_type(pd.read_csv(path), pd.DataFrame), pd.DataFrame)
def test_types_copy() -> None:
df = pd.DataFrame([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
check(assert_type(df.copy(), pd.DataFrame), pd.DataFrame)
def test_types_getitem() -> None:
df = pd.DataFrame(data={"col1": [1, 2], "col2": [3, 4], 5: [6, 7]})
i = pd.Index(["col1", "col2"])
s = pd.Series(["col1", "col2"])
select_df = pd.DataFrame({"col1": [True, True], "col2": [False, True]})
a = np.array(["col1", "col2"])
df["col1"]
df[5]
df[["col1", "col2"]]
df[1:]
df[s]
df[a]
df[select_df]
df[i]
def test_types_getitem_with_hashable() -> None:
# Testing getitem support for hashable types that are not scalar
# Due to the bug in https://github.com/pandas-dev/pandas-stubs/issues/592
class MyEnum(Enum):
FIRST = "tayyar"
SECOND = "haydar"
df = pd.DataFrame(
data=[[12.2, 10], [8.8, 15]], columns=[MyEnum.FIRST, MyEnum.SECOND]
)
check(assert_type(df[MyEnum.FIRST], pd.Series), pd.Series)
check(assert_type(df[1:], pd.DataFrame), pd.DataFrame)
check(assert_type(df[:2], pd.DataFrame), pd.DataFrame)
df2 = pd.DataFrame(data=[[12.2, 10], [8.8, 15]], columns=[3, 4])
check(assert_type(df2[3], pd.Series), pd.Series)
check(assert_type(df2[[3]], pd.DataFrame), pd.DataFrame)
check(assert_type(df2[[3, 4]], pd.DataFrame), pd.DataFrame)
def test_slice_setitem() -> None:
df = pd.DataFrame(data={"col1": [1, 2], "col2": [3, 4], 5: [6, 7]})
df[1:] = [10, 11, 12]
def test_types_setitem() -> None:
df = pd.DataFrame(data={"col1": [1, 2], "col2": [3, 4], 5: [6, 7]})
i = pd.Index(["col1", "col2"])
s = pd.Series(["col1", "col2"])
a = np.array(["col1", "col2"])
df["col1"] = [1, 2]
df[5] = [5, 6]
df[["col1", "col2"]] = [[1, 2], [3, 4]]
df[s] = [5, 6]
df[a] = [[1, 2], [3, 4]]
df[i] = [8, 9]
def test_types_setitem_mask() -> None:
df = pd.DataFrame(data={"col1": [1, 2], "col2": [3, 4], 5: [6, 7]})
select_df = pd.DataFrame({"col1": [True, True], "col2": [False, True]})
df[select_df] = [1, 2, 3]
def test_types_iloc_iat() -> None:
df = pd.DataFrame(data={"col1": [1, 2], "col2": [3, 4]})
df.iloc[1, 1]
df.iloc[[1], [1]]
df.iat[0, 0]
def test_types_loc_at() -> None:
df = pd.DataFrame(data={"col1": [1, 2], "col2": [3, 4]})
df.loc[[0], "col1"]
df.at[0, "col1"]
df.loc[0, "col1"]
def test_types_boolean_indexing() -> None:
df = pd.DataFrame(data={"col1": [1, 2], "col2": [3, 4]})
check(assert_type(df[df > 1], pd.DataFrame), pd.DataFrame)
check(assert_type(df[~(df > 1.0)], pd.DataFrame), pd.DataFrame)
row_mask = df["col1"] >= 2
col_mask = df.columns.isin(["col2"])
check(assert_type(df.loc[row_mask], pd.DataFrame), pd.DataFrame)
check(assert_type(df.loc[~row_mask], pd.DataFrame), pd.DataFrame)
check(assert_type(df.loc[row_mask, :], pd.DataFrame), pd.DataFrame)
check(assert_type(df.loc[:, col_mask], pd.DataFrame), pd.DataFrame)
check(assert_type(df.loc[row_mask, col_mask], pd.DataFrame), pd.DataFrame)
check(assert_type(df.loc[~row_mask, ~col_mask], pd.DataFrame), pd.DataFrame)
def test_types_df_to_df_comparison() -> None:
df = pd.DataFrame(data={"col1": [1, 2]})
df2 = pd.DataFrame(data={"col1": [3, 2]})
check(assert_type(df > df2, pd.DataFrame), pd.DataFrame)
check(assert_type(df >= df2, pd.DataFrame), pd.DataFrame)
check(assert_type(df < df2, pd.DataFrame), pd.DataFrame)
check(assert_type(df <= df2, pd.DataFrame), pd.DataFrame)
check(assert_type(df == df2, pd.DataFrame), pd.DataFrame)
def test_types_head_tail() -> None:
df = pd.DataFrame(data={"col1": [1, 2], "col2": [3, 4]})
df.head(1)
df.tail(1)
def test_types_assign() -> None:
df = pd.DataFrame(data={"col1": [1, 2], "col2": [3, 4]})
df.assign(col3=lambda frame: frame.sum(axis=1))
df["col3"] = df.sum(axis=1)
def test_types_sample() -> None:
df = pd.DataFrame(data={"col1": [1, 2], "col2": [3, 4]})
# GH 67
check(assert_type(df.sample(frac=0.5), pd.DataFrame), pd.DataFrame)
check(assert_type(df.sample(n=1), pd.DataFrame), pd.DataFrame)
check(
assert_type(df.sample(n=1, random_state=np.random.default_rng()), pd.DataFrame),
pd.DataFrame,
)
def test_types_nlargest_nsmallest() -> None:
df = pd.DataFrame(data={"col1": [1, 2], "col2": [3, 4]})
df.nlargest(1, "col1")
df.nsmallest(1, "col2")
def test_types_filter() -> None:
df = pd.DataFrame(data={"col1": [1, 2], "col2": [3, 4]})
df.filter(items=["col1"])
df.filter(regex="co.*")
df.filter(like="1")
# [PR 964] Docs state `items` is `list-like`
df.filter(items=("col2", "col2", 1, tuple([4])))
def test_types_setting() -> None:
df = pd.DataFrame(data={"col1": [1, 2], "col2": [3, 4]})
df["col1"] = 1
df[df == 1] = 7
def test_types_drop() -> None:
df = pd.DataFrame(data={"col1": [1, 2], "col2": [3, 4]})
check(assert_type(df.drop("col1", axis=1), pd.DataFrame), pd.DataFrame)
check(assert_type(df.drop(columns=["col1"]), pd.DataFrame), pd.DataFrame)
check(assert_type(df.drop([0]), pd.DataFrame), pd.DataFrame)
check(assert_type(df.drop(index=[0]), pd.DataFrame), pd.DataFrame)
check(assert_type(df.drop(columns=["col1"]), pd.DataFrame), pd.DataFrame)
check(assert_type(df.drop(index=1), pd.DataFrame), pd.DataFrame)
check(assert_type(df.drop(labels=0), pd.DataFrame), pd.DataFrame)
assert assert_type(df.drop([0, 0], inplace=True), None) is None
to_drop: list[str] = ["col1"]
check(assert_type(df.drop(columns=to_drop), pd.DataFrame), pd.DataFrame)
# GH 302
check(assert_type(df.drop(pd.Index([1])), pd.DataFrame), pd.DataFrame)
check(assert_type(df.drop(index=pd.Index([1])), pd.DataFrame), pd.DataFrame)
check(assert_type(df.drop(columns=pd.Index(["col1"])), pd.DataFrame), pd.DataFrame)
def test_arguments_drop() -> None:
# GH 950
if TYPE_CHECKING_INVALID_USAGE:
df = pd.DataFrame(data={"col1": [1, 2], "col2": [3, 4]})
res1 = df.drop() # type: ignore[call-overload] # pyright: ignore[reportCallIssue]
res2 = df.drop([0], columns=["col1"]) # type: ignore[call-overload] # pyright: ignore[reportCallIssue, reportArgumentType]
res3 = df.drop([0], index=[0]) # type: ignore[call-overload] # pyright: ignore[reportCallIssue, reportArgumentType]
# These should also fail, but `None` is Hasheable and i do not know how
# to type hint a non-None hashable.
# res4 = df.drop(columns=None)
# res5 = df.drop(index=None)
# res6 = df.drop(None)
def test_types_dropna() -> None:
df = pd.DataFrame(data={"col1": [np.nan, np.nan], "col2": [3, np.nan]})
check(assert_type(df.dropna(), pd.DataFrame), pd.DataFrame)
check(assert_type(df.dropna(ignore_index=True), pd.DataFrame), pd.DataFrame)
check(assert_type(df.dropna(axis=1, thresh=1), pd.DataFrame), pd.DataFrame)
assert (
assert_type(df.dropna(axis=0, how="all", subset=["col1"], inplace=True), None)
is None
)
assert (
assert_type(
df.dropna(
axis=0, how="all", subset=["col1"], inplace=True, ignore_index=False
),
None,
)
is None
)
def test_types_drop_duplicates() -> None:
# GH#59237
df = pd.DataFrame(
{
"AAA": ["foo", "bar", "foo", "bar", "foo", "bar", "bar", "foo"],
"B": ["one", "one", "two", "two", "two", "two", "one", "two"],
"C": [1, 1, 2, 2, 2, 2, 1, 2],
"D": range(8),
}
)
check(assert_type(df.drop_duplicates(["AAA"]), pd.DataFrame), pd.DataFrame)
check(assert_type(df.drop_duplicates(("AAA",)), pd.DataFrame), pd.DataFrame)
check(assert_type(df.drop_duplicates("AAA"), pd.DataFrame), pd.DataFrame)
assert assert_type(df.drop_duplicates("AAA", inplace=True), None) is None
check(
assert_type(
df.drop_duplicates("AAA", inplace=False, ignore_index=True), pd.DataFrame
),
pd.DataFrame,
)
if not PD_LTE_22:
check(assert_type(df.drop_duplicates({"AAA"}), pd.DataFrame), pd.DataFrame)
check(
assert_type(df.drop_duplicates({"AAA": None}), pd.DataFrame), pd.DataFrame
)
def test_types_fillna() -> None:
df = pd.DataFrame(data={"col1": [np.nan, np.nan], "col2": [3, np.nan]})
check(assert_type(df.fillna(0), pd.DataFrame), pd.DataFrame)
check(assert_type(df.fillna(0, axis=1, inplace=True), None), type(None))
def test_types_sort_index() -> None:
df = pd.DataFrame(data={"col1": [1, 2, 3, 4]}, index=[5, 1, 3, 2])
df2 = pd.DataFrame(data={"col1": [1, 2, 3, 4]}, index=["a", "b", "c", "d"])
check(assert_type(df.sort_index(), pd.DataFrame), pd.DataFrame)
level1 = (1, 2)
check(
assert_type(df.sort_index(ascending=False, level=level1), pd.DataFrame),
pd.DataFrame,
)
level2: list[str] = ["a", "b", "c"]
check(assert_type(df2.sort_index(level=level2), pd.DataFrame), pd.DataFrame)
check(
assert_type(df.sort_index(ascending=False, level=3), pd.DataFrame), pd.DataFrame
)
check(assert_type(df.sort_index(kind="mergesort", inplace=True), None), type(None))
# This was added in 1.1.0 https://pandas.pydata.org/docs/whatsnew/v1.1.0.html
def test_types_sort_index_with_key() -> None:
df = pd.DataFrame(data={"col1": [1, 2, 3, 4]}, index=["a", "b", "C", "d"])
check(
assert_type(df.sort_index(key=lambda k: k.str.lower()), pd.DataFrame),
pd.DataFrame,
)
def test_types_set_index() -> None:
df = pd.DataFrame(
data={"col1": [1, 2, 3, 4], "col2": ["a", "b", "c", "d"]}, index=[5, 1, 3, 2]
)
check(assert_type(df.set_index("col1"), pd.DataFrame), pd.DataFrame)
check(assert_type(df.set_index("col1", drop=False), pd.DataFrame), pd.DataFrame)
check(assert_type(df.set_index("col1", append=True), pd.DataFrame), pd.DataFrame)
check(
assert_type(df.set_index("col1", verify_integrity=True), pd.DataFrame),
pd.DataFrame,
)
check(assert_type(df.set_index(["col1", "col2"]), pd.DataFrame), pd.DataFrame)
check(assert_type(df.set_index("col1", inplace=True), None), type(None))
# GH 140
check(
assert_type(df.set_index(pd.Index(["w", "x", "y", "z"])), pd.DataFrame),
pd.DataFrame,
)
def test_types_query() -> None:
df = pd.DataFrame(data={"col1": [1, 2, 3, 4], "col2": [3, 0, 1, 7]})
check(assert_type(df.query("col1 > col2"), pd.DataFrame), pd.DataFrame)
check(assert_type(df.query("col1 % col2 == 0", inplace=True), None), type(None))
def test_types_eval() -> None:
df = pd.DataFrame(data={"col1": [1, 2, 3, 4], "col2": [3, 0, 1, 7]})
check(assert_type(df.eval("E = col1 > col2", inplace=True), None), type(None))
check(assert_type(df.eval("C = col1 % col2 == 0", inplace=True), None), type(None))
check(
assert_type(
df.eval("E = col1 > col2"), Scalar | np.ndarray | pd.DataFrame | pd.Series
),
pd.DataFrame,
)
def test_types_sort_values() -> None:
df = pd.DataFrame(data={"col1": [2, 1], "col2": [3, 4]})
check(assert_type(df.sort_values("col1"), pd.DataFrame), pd.DataFrame)
check(
assert_type(df.sort_values("col1", ascending=False, inplace=True), None),
type(None),
)
check(
assert_type(
df.sort_values(by=["col1", "col2"], ascending=[True, False]), pd.DataFrame
),
pd.DataFrame,
)
# This was added in 1.1.0 https://pandas.pydata.org/docs/whatsnew/v1.1.0.html
def test_types_sort_values_with_key() -> None:
df = pd.DataFrame(data={"col1": [2, 1], "col2": [3, 4]})
check(
assert_type(df.sort_values(by="col1", key=lambda k: -k), pd.DataFrame),
pd.DataFrame,
)
def test_types_shift() -> None:
df = pd.DataFrame(data={"col1": [1, 1], "col2": [3, 4]})
df.shift()
df.shift(1)
df.shift(-1)
def test_types_rank() -> None:
df = pd.DataFrame(data={"col1": [2, 1], "col2": [3, 4]})
df.rank(axis=0, na_option="bottom")
df.rank(method="min", pct=True)
df.rank(method="dense", ascending=True)
df.rank(method="first", numeric_only=True)
def test_types_mean() -> None:
df = pd.DataFrame(data={"col1": [2, 1], "col2": [3, 4]})
check(assert_type(df.mean(), pd.Series), pd.Series)
check(assert_type(df.mean(axis=0), pd.Series), pd.Series)
check(assert_type(df.groupby(level=0).mean(), pd.DataFrame), pd.DataFrame)
check(
assert_type(df.mean(axis=1, skipna=True, numeric_only=False), pd.Series),
pd.Series,
)
if TYPE_CHECKING_INVALID_USAGE:
df3: pd.DataFrame = df.groupby(axis=1, level=0).mean() # type: ignore[call-overload] # pyright: ignore[reportArgumentType, reportCallIssue]
df4: pd.DataFrame = df.groupby(axis=1, level=0, dropna=True).mean() # type: ignore[call-overload] # pyright: ignore[reportArgumentType, reportCallIssue]
def test_types_median() -> None:
df = pd.DataFrame(data={"col1": [2, 1], "col2": [3, 4]})
check(assert_type(df.median(), pd.Series), pd.Series)
check(assert_type(df.median(axis=0), pd.Series), pd.Series)
check(assert_type(df.groupby(level=0).median(), pd.DataFrame), pd.DataFrame)
check(
assert_type(df.median(axis=1, skipna=True, numeric_only=False), pd.Series),
pd.Series,
)
if TYPE_CHECKING_INVALID_USAGE:
df3: pd.DataFrame = df.groupby(axis=1, level=0).median() # type: ignore[call-overload] # pyright: ignore[reportArgumentType, reportCallIssue]
df4: pd.DataFrame = df.groupby(axis=1, level=0, dropna=True).median() # type: ignore[call-overload] # pyright: ignore[reportArgumentType, reportCallIssue]
def test_types_iterrows() -> None:
df = pd.DataFrame(data={"col1": [2, 1], "col2": [3, 4]})
# TODO rewrite the below with check assert_type
vv: Iterable[tuple[Hashable, Series]] = df.iterrows()
def test_types_itertuples() -> None:
df = pd.DataFrame(data={"col1": [2, 1], "col2": [3, 4]})
check(
assert_type(df.itertuples(), Iterable[_PandasNamedTuple]),
Iterable,
_PandasNamedTuple,
)
check(
assert_type(
df.itertuples(index=False, name="Foobar"), Iterable[_PandasNamedTuple]
),
Iterable,
_PandasNamedTuple,
)
check(
assert_type(df.itertuples(index=False, name=None), Iterable[tuple[Any, ...]]),
Iterable,
object,
)
def test_types_sum() -> None:
df = pd.DataFrame(data={"col1": [2, 1], "col2": [3, 4]})
df.sum()
df.sum(axis=1)
def test_types_cumsum() -> None:
df = pd.DataFrame(data={"col1": [2, 1], "col2": [3, 4]})
df.cumsum()
df.sum(axis=0)
def test_types_min() -> None:
df = pd.DataFrame(data={"col1": [2, 1], "col2": [3, 4]})
df.min()
df.min(axis=0)
def test_types_max() -> None:
df = pd.DataFrame(data={"col1": [2, 1], "col2": [3, 4]})
df.max()
df.max(axis=0)
def test_types_quantile() -> None:
df = pd.DataFrame(data={"col1": [2, 1], "col2": [3, 4]})
df.quantile([0.25, 0.5])
df.quantile(0.75)
df.quantile()
# GH 81
df.quantile(np.array([0.25, 0.75]))
@pytest.mark.parametrize("lower", [None, 5, pd.Series([3, 4])])
@pytest.mark.parametrize("upper", [None, 15, pd.Series([12, 13])])
@pytest.mark.parametrize("axis", [None, 0, "index"])
def test_types_clip(lower, upper, axis) -> None:
def is_none_or_numeric(val: Any) -> bool:
return val is None or isinstance(val, int | float)
df = pd.DataFrame(data={"col1": [20, 12], "col2": [3, 14]})
uses_array = not (is_none_or_numeric(lower) and is_none_or_numeric(upper))
if uses_array and axis is None:
with pytest.raises(ValueError):
df.clip(lower=lower, upper=upper, axis=axis)
else:
check(
assert_type(df.clip(lower=lower, upper=upper, axis=axis), pd.DataFrame),
pd.DataFrame,
)
def test_types_abs() -> None:
df = pd.DataFrame(data={"col1": [-5, 1], "col2": [3, -14]})
df.abs()
def test_types_var() -> None:
df = pd.DataFrame(data={"col1": [2, 1], "col2": [1, 4]})
df.var()
df.var(axis=1, ddof=1)
df.var(skipna=True, numeric_only=False)
def test_types_std() -> None:
df = pd.DataFrame(data={"col1": [2, 1], "col2": [1, 4]})
df.std()
df.std(axis=1, ddof=1)
df.std(skipna=True, numeric_only=False)
def test_types_idxmin() -> None:
df = pd.DataFrame(data={"col1": [2, 1], "col2": [3, 4]})
df.idxmin()
df.idxmin(axis=0)
def test_types_idxmax() -> None:
df = pd.DataFrame(data={"col1": [2, 1], "col2": [3, 4]})
df.idxmax()
df.idxmax(axis=0)
# This was added in 1.1.0 https://pandas.pydata.org/docs/whatsnew/v1.1.0.html
def test_types_value_counts() -> None:
df = pd.DataFrame(data={"col1": [1, 2], "col2": [1, 4]})
check(assert_type(df.value_counts(), "pd.Series[int]"), pd.Series, np.integer)
check(
assert_type(df.value_counts(normalize=True), "pd.Series[float]"),
pd.Series,
float,
)
def test_types_unique() -> None:
# This is really more for of a Series test
df = pd.DataFrame(data={"col1": [1, 2], "col2": [1, 4]})
df["col1"].unique()
def test_types_apply() -> None:
df = pd.DataFrame(data={"col1": [1, 2], "col2": [3, 4], "col3": [5, 6]})
def returns_scalar(_: pd.Series) -> int:
return 2
def returns_scalar_na(x: pd.Series) -> int | NAType:
return 2 if (x < 5).all() else pd.NA
def returns_series(x: pd.Series) -> pd.Series:
return x**2
def returns_listlike_of_2(_: pd.Series) -> tuple[int, int]:
return (7, 8)
def returns_listlike_of_3(_: pd.Series) -> tuple[int, int, int]:
return (7, 8, 9)
def returns_dict(_: pd.Series) -> dict[str, int]:
return {"col4": 7, "col5": 8}
# Misc checks
check(assert_type(df.apply(np.exp), pd.DataFrame), pd.DataFrame)
check(assert_type(df.apply(str), "pd.Series[str]"), pd.Series, str)
# GH 393
def gethead(s: pd.Series, y: int) -> pd.Series:
return s.head(y)
check(assert_type(df.apply(gethead, args=(4,)), pd.DataFrame), pd.DataFrame)
# Check various return types for default result_type (None) with default axis (0)
check(
assert_type(df.apply(returns_scalar), "pd.Series[int]"), pd.Series, np.integer
)
check(
assert_type(df.apply(returns_scalar_na), "pd.Series[int]"),
pd.Series,
int,
)
check(assert_type(df.apply(returns_series), pd.DataFrame), pd.DataFrame)
check(assert_type(df.apply(returns_listlike_of_3), pd.DataFrame), pd.DataFrame)
check(assert_type(df.apply(returns_dict), pd.Series), pd.Series)
# Check various return types for result_type="expand" with default axis (0)
check(
# Note that technically it does not make sense
# to pass a result_type of "expand" to a scalar return
assert_type(df.apply(returns_scalar, result_type="expand"), "pd.Series[int]"),
pd.Series,
np.integer,
)
check(
assert_type(df.apply(returns_series, result_type="expand"), pd.DataFrame),
pd.DataFrame,
)
check(
assert_type(
df.apply(returns_listlike_of_3, result_type="expand"), pd.DataFrame
),
pd.DataFrame,
)
check(
assert_type(df.apply(returns_dict, result_type="expand"), pd.DataFrame),
pd.DataFrame,
)
# Check various return types for result_type="reduce" with default axis (0)
check(
# Note that technically it does not make sense
# to pass a result_type of "reduce" to a scalar return
assert_type(df.apply(returns_scalar, result_type="reduce"), "pd.Series[int]"),
pd.Series,
np.integer,
)
check(
# Note that technically it does not make sense
# to pass a result_type of "reduce" to a series return
assert_type(df.apply(returns_series, result_type="reduce"), pd.Series),
pd.Series, # This technically returns a pd.Series[pd.Series], but typing does not support that
)
check(
assert_type(df.apply(returns_listlike_of_3, result_type="reduce"), pd.Series),
pd.Series,
)
check(
assert_type(df.apply(returns_dict, result_type="reduce"), pd.Series), pd.Series
)
# Check various return types for default result_type (None) with axis=1
check(
assert_type(df.apply(returns_scalar, axis=1), "pd.Series[int]"),
pd.Series,
np.integer,
)
check(assert_type(df.apply(returns_series, axis=1), pd.DataFrame), pd.DataFrame)
check(assert_type(df.apply(returns_listlike_of_3, axis=1), pd.Series), pd.Series)
check(assert_type(df.apply(returns_dict, axis=1), pd.Series), pd.Series)
# Check various return types for result_type="expand" with axis=1
check(
# Note that technically it does not make sense
# to pass a result_type of "expand" to a scalar return
assert_type(
df.apply(returns_scalar, axis=1, result_type="expand"), "pd.Series[int]"
),
pd.Series,
np.integer,
)
check(
assert_type(
df.apply(returns_series, axis=1, result_type="expand"), pd.DataFrame
),
pd.DataFrame,
)
check(
assert_type(
df.apply(returns_listlike_of_3, axis=1, result_type="expand"), pd.DataFrame
),
pd.DataFrame,
)
check(
assert_type(df.apply(returns_dict, axis=1, result_type="expand"), pd.DataFrame),
pd.DataFrame,
)
# Check various return types for result_type="reduce" with axis=1
check(
# Note that technically it does not make sense
# to pass a result_type of "reduce" to a scalar return
assert_type(
df.apply(returns_scalar, axis=1, result_type="reduce"), "pd.Series[int]"
),
pd.Series,
np.integer,
)
check(
# Note that technically it does not make sense
# to pass a result_type of "reduce" to a series return
assert_type(
df.apply(returns_series, axis=1, result_type="reduce"), pd.DataFrame
),
pd.DataFrame,
)
check(
assert_type(
df.apply(returns_listlike_of_3, axis=1, result_type="reduce"), pd.Series
),
pd.Series,
)
check(
assert_type(df.apply(returns_dict, axis=1, result_type="reduce"), pd.Series),
pd.Series,
)
# Check various return types for result_type="broadcast" with axis=0 and axis=1
check(
# Note that technically it does not make sense
# to pass a result_type of "broadcast" to a scalar return
assert_type(df.apply(returns_scalar, result_type="broadcast"), pd.DataFrame),
pd.DataFrame,
)
check(
assert_type(df.apply(returns_series, result_type="broadcast"), pd.DataFrame),
pd.DataFrame,
)
check(
# Can only broadcast a list-like of 2 elements, not 3, because there are 2 rows
assert_type(
df.apply(returns_listlike_of_2, result_type="broadcast"), pd.DataFrame
),
pd.DataFrame,
)
check(
# Note that technicaly it does not make sense
# to pass a result_type of "broadcast" to a scalar return
assert_type(
df.apply(returns_scalar, axis=1, result_type="broadcast"), pd.DataFrame
),
pd.DataFrame,
)
check(
assert_type(
df.apply(returns_series, axis=1, result_type="broadcast"), pd.DataFrame
),
pd.DataFrame,
)
check(
assert_type(
# Can only broadcast a list-like of 3 elements, not 2,
# as there are 3 columns
df.apply(returns_listlike_of_3, axis=1, result_type="broadcast"),
pd.DataFrame,
),
pd.DataFrame,
)
# Since dicts will be assigned to elements of np.ndarray inside broadcasting,
# we need to use a DataFrame with object dtype to make the assignment possible.
df2 = pd.DataFrame({"col1": ["a", "b"], "col2": ["c", "d"]})
check(
assert_type(df2.apply(returns_dict, result_type="broadcast"), pd.DataFrame),
pd.DataFrame,
)
check(
assert_type(
df2.apply(returns_dict, axis=1, result_type="broadcast"), pd.DataFrame
),
pd.DataFrame,
)
# Test various other positional/keyword argument combinations
# to ensure all overloads are supported
check(
assert_type(df.apply(returns_scalar, axis=0), "pd.Series[int]"),
pd.Series,
np.integer,
)
check(
assert_type(
df.apply(returns_scalar, axis=0, result_type=None), "pd.Series[int]"
),
pd.Series,
np.integer,
)
check(
assert_type(df.apply(returns_scalar, 0, False, None), "pd.Series[int]"),
pd.Series,
np.integer,
)
check(
assert_type(
df.apply(returns_scalar, 0, False, result_type=None), "pd.Series[int]"
),
pd.Series,
np.integer,
)
check(
assert_type(
df.apply(returns_scalar, 0, raw=False, result_type=None), "pd.Series[int]"
),
pd.Series,
np.integer,
)
def test_types_map() -> None:
# GH774
df = pd.DataFrame(data={"col1": [2, 1], "col2": [3, 4]})
df.map(lambda x: x**2)
df.map(np.exp)
df.map(str)
# na_action parameter was added in 1.2.0 https://pandas.pydata.org/docs/whatsnew/v1.2.0.html
df.map(np.exp, na_action="ignore")
df.map(str, na_action=None)
def test_types_element_wise_arithmetic() -> None:
df = pd.DataFrame(data={"col1": [2, 1], "col2": [3, 4]})
df2 = pd.DataFrame(data={"col1": [10, 20], "col3": [3, 4]})
check(assert_type(df + df2, pd.DataFrame), pd.DataFrame)
check(assert_type(df.add(df2, fill_value=0), pd.DataFrame), pd.DataFrame)
check(assert_type(df - df2, pd.DataFrame), pd.DataFrame)
check(assert_type(df.sub(df2, fill_value=0), pd.DataFrame), pd.DataFrame)
check(assert_type(df * df2, pd.DataFrame), pd.DataFrame)
check(assert_type(df.mul(df2, fill_value=0), pd.DataFrame), pd.DataFrame)
check(assert_type(df / df2, pd.DataFrame), pd.DataFrame)
check(assert_type(df.div(df2, fill_value=0), pd.DataFrame), pd.DataFrame)
check(assert_type(df / [2, 2], pd.DataFrame), pd.DataFrame)
check(assert_type(df.div([2, 2], fill_value=0), pd.DataFrame), pd.DataFrame)
check(assert_type(df // df2, pd.DataFrame), pd.DataFrame)
check(assert_type(df.floordiv(df2, fill_value=0), pd.DataFrame), pd.DataFrame)
check(assert_type(df // [2, 2], pd.DataFrame), pd.DataFrame)
check(assert_type(df.floordiv([2, 2], fill_value=0), pd.DataFrame), pd.DataFrame)
check(assert_type(df % df2, pd.DataFrame), pd.DataFrame)
check(assert_type(df.mod(df2, fill_value=0), pd.DataFrame), pd.DataFrame)
check(assert_type(df2**df, pd.DataFrame), pd.DataFrame)
check(assert_type(df2.pow(df, fill_value=0), pd.DataFrame), pd.DataFrame)
# divmod operation was added in 1.2.0 https://pandas.pydata.org/docs/whatsnew/v1.2.0.html
check(
assert_type(divmod(df, df2), tuple[pd.DataFrame, pd.DataFrame]),
tuple,
pd.DataFrame,
)
check(
assert_type(df.__divmod__(df2), tuple[pd.DataFrame, pd.DataFrame]),
tuple,
pd.DataFrame,
)
check(
assert_type(df.__rdivmod__(df2), tuple[pd.DataFrame, pd.DataFrame]),
tuple,
pd.DataFrame,
)
def test_types_scalar_arithmetic() -> None:
df = pd.DataFrame(data={"col1": [2, 1], "col2": [3, 4]})
check(assert_type(df + 1, pd.DataFrame), pd.DataFrame)
check(assert_type(df.add(1, fill_value=0), pd.DataFrame), pd.DataFrame)
check(assert_type(df - 1, pd.DataFrame), pd.DataFrame)
check(assert_type(df.sub(1, fill_value=0), pd.DataFrame), pd.DataFrame)
check(assert_type(df * 2, pd.DataFrame), pd.DataFrame)