Skip to content

[Bug]:RuntimeError: Input type (float) and bias type (struct c10::Half) should be the same (use igpu) #651

@cihi10

Description

@cihi10

Checklist

  • The issue exists after disabling all extensions
  • The issue exists on a clean installation of webui
  • The issue is caused by an extension, but I believe it is caused by a bug in the webui
  • The issue exists in the current version of the webui
  • The issue has not been reported before recently
  • The issue has been reported before but has not been fixed yet

What happened?

Error after trying to generate an image

Steps to reproduce the problem

execute webui.bat
type a prompt
get error RuntimeError: Input type (float) and bias type (struct c10::Half) should be the same

What should have happened?

WebUI should have generated an image, instead I got an error

What browsers do you use to access the UI ?

Google Chrome

Sysinfo

sysinfo-2025-12-22-13-42.json

Console logs

D:\Stable Diffusion AI\stable-diffusion-webui-directml>git pull
Already up to date.
venv "D:\Stable Diffusion AI\stable-diffusion-webui-directml\venv\Scripts\Python.exe"
Python 3.10.6 (tags/v3.10.6:9c7b4bd, Aug  1 2022, 21:53:49) [MSC v.1932 64 bit (AMD64)]
Version: v1.10.1-amd-52-g920f4249
Commit hash: 920f42497fb7d11a7f89a70b2e9ac6604bc4d961
FATAL: No ROCm agent was found. Please make sure that graphics driver is installed and up to date.
W1222 20:19:15.903916 2080 venv\Lib\site-packages\torch\distributed\elastic\multiprocessing\redirects.py:29] NOTE: Redirects are currently not supported in Windows or MacOs.
D:\Stable Diffusion AI\stable-diffusion-webui-directml\venv\lib\site-packages\timm\models\layers\__init__.py:48: FutureWarning: Importing from timm.models.layers is deprecated, please import via timm.layers
  warnings.warn(f"Importing from {__name__} is deprecated, please import via timm.layers", FutureWarning)
no module 'xformers'. Processing without...
no module 'xformers'. Processing without...
No module 'xformers'. Proceeding without it.
D:\Stable Diffusion AI\stable-diffusion-webui-directml\venv\lib\site-packages\pytorch_lightning\utilities\distributed.py:258: LightningDeprecationWarning: `pytorch_lightning.utilities.distributed.rank_zero_only` has been deprecated in v1.8.1 and will be removed in v2.0.0. You can import it from `pytorch_lightning.utilities` instead.
  rank_zero_deprecation(
Launching Web UI with arguments: --opt-sub-quad-attention --lowvram --disable-nan-check --theme dark
Warning: caught exception 'Torch not compiled with CUDA enabled', memory monitor disabled
D:\Stable Diffusion AI\stable-diffusion-webui-directml\venv\lib\site-packages\torch\amp\autocast_mode.py:266: UserWarning: User provided device_type of 'cuda', but CUDA is not available. Disabling
  warnings.warn(
ONNX: version=1.23.2 provider=CPUExecutionProvider, available=['AzureExecutionProvider', 'CPUExecutionProvider']
Loading weights [6ce0161689] from D:\Stable Diffusion AI\stable-diffusion-webui-directml\models\Stable-diffusion\v1-5-pruned-emaonly.safetensors
Creating model from config: D:\Stable Diffusion AI\stable-diffusion-webui-directml\configs\v1-inference.yaml
Running on local URL:  http://127.0.0.1:7860

To create a public link, set `share=True` in `launch()`.
Startup time: 25.8s (prepare environment: 37.4s, initialize shared: 3.7s, load scripts: 1.0s, initialize extra networks: 0.4s, create ui: 1.0s, gradio launch: 0.5s).
Applying attention optimization: sub-quadratic... done.
Model loaded in 30.2s (load weights from disk: 1.6s, create model: 1.9s, apply weights to model: 21.7s, apply half(): 4.0s, hijack: 0.1s, calculate empty prompt: 0.7s).
  0%|                                                                                           | 0/20 [00:00<?, ?it/s]
*** Error completing request
*** Arguments: ('task(esk5okrtw6keytt)', <gradio.routes.Request object at 0x0000028DDEB85E70>, 'man', '', [], 1, 1, 7, 512, 512, False, 0.7, 2, 'Latent', 0, 0, 0, 'Use same checkpoint', 'Use same sampler', 'Use same scheduler', '', '', [], 0, 20, 'DPM++ 2M', 'Automatic', False, '', 0.8, -1, False, -1, 0, 0, 0, False, False, 'positive', 'comma', 0, False, False, 'start', '', 1, '', [], 0, '', [], 0, '', [], True, False, False, False, False, False, False, 0, False) {}
    Traceback (most recent call last):
      File "D:\Stable Diffusion AI\stable-diffusion-webui-directml\modules\call_queue.py", line 74, in f
        res = list(func(*args, **kwargs))
      File "D:\Stable Diffusion AI\stable-diffusion-webui-directml\modules\call_queue.py", line 53, in f
        res = func(*args, **kwargs)
      File "D:\Stable Diffusion AI\stable-diffusion-webui-directml\modules\call_queue.py", line 37, in f
        res = func(*args, **kwargs)
      File "D:\Stable Diffusion AI\stable-diffusion-webui-directml\modules\txt2img.py", line 109, in txt2img
        processed = processing.process_images(p)
      File "D:\Stable Diffusion AI\stable-diffusion-webui-directml\modules\processing.py", line 849, in process_images
        res = process_images_inner(p)
      File "D:\Stable Diffusion AI\stable-diffusion-webui-directml\modules\processing.py", line 1083, in process_images_inner
        samples_ddim = p.sample(conditioning=p.c, unconditional_conditioning=p.uc, seeds=p.seeds, subseeds=p.subseeds, subseed_strength=p.subseed_strength, prompts=p.prompts)
      File "D:\Stable Diffusion AI\stable-diffusion-webui-directml\modules\processing.py", line 1441, in sample
        samples = self.sampler.sample(self, x, conditioning, unconditional_conditioning, image_conditioning=self.txt2img_image_conditioning(x))
      File "D:\Stable Diffusion AI\stable-diffusion-webui-directml\modules\sd_samplers_kdiffusion.py", line 233, in sample
        samples = self.launch_sampling(steps, lambda: self.func(self.model_wrap_cfg, x, extra_args=self.sampler_extra_args, disable=False, callback=self.callback_state, **extra_params_kwargs))
      File "D:\Stable Diffusion AI\stable-diffusion-webui-directml\modules\sd_samplers_common.py", line 272, in launch_sampling
        return func()
      File "D:\Stable Diffusion AI\stable-diffusion-webui-directml\modules\sd_samplers_kdiffusion.py", line 233, in <lambda>
        samples = self.launch_sampling(steps, lambda: self.func(self.model_wrap_cfg, x, extra_args=self.sampler_extra_args, disable=False, callback=self.callback_state, **extra_params_kwargs))
      File "D:\Stable Diffusion AI\stable-diffusion-webui-directml\venv\lib\site-packages\torch\utils\_contextlib.py", line 116, in decorate_context
        return func(*args, **kwargs)
      File "D:\Stable Diffusion AI\stable-diffusion-webui-directml\repositories\k-diffusion\k_diffusion\sampling.py", line 594, in sample_dpmpp_2m
        denoised = model(x, sigmas[i] * s_in, **extra_args)
      File "D:\Stable Diffusion AI\stable-diffusion-webui-directml\venv\lib\site-packages\torch\nn\modules\module.py", line 1751, in _wrapped_call_impl
        return self._call_impl(*args, **kwargs)
      File "D:\Stable Diffusion AI\stable-diffusion-webui-directml\venv\lib\site-packages\torch\nn\modules\module.py", line 1762, in _call_impl
        return forward_call(*args, **kwargs)
      File "D:\Stable Diffusion AI\stable-diffusion-webui-directml\modules\sd_samplers_cfg_denoiser.py", line 249, in forward
        x_out = self.inner_model(x_in, sigma_in, cond=make_condition_dict(cond_in, image_cond_in))
      File "D:\Stable Diffusion AI\stable-diffusion-webui-directml\venv\lib\site-packages\torch\nn\modules\module.py", line 1751, in _wrapped_call_impl
        return self._call_impl(*args, **kwargs)
      File "D:\Stable Diffusion AI\stable-diffusion-webui-directml\venv\lib\site-packages\torch\nn\modules\module.py", line 1762, in _call_impl
        return forward_call(*args, **kwargs)
      File "D:\Stable Diffusion AI\stable-diffusion-webui-directml\repositories\k-diffusion\k_diffusion\external.py", line 112, in forward
        eps = self.get_eps(input * c_in, self.sigma_to_t(sigma), **kwargs)
      File "D:\Stable Diffusion AI\stable-diffusion-webui-directml\repositories\k-diffusion\k_diffusion\external.py", line 138, in get_eps
        return self.inner_model.apply_model(*args, **kwargs)
      File "D:\Stable Diffusion AI\stable-diffusion-webui-directml\modules\sd_hijack_utils.py", line 22, in <lambda>
        setattr(resolved_obj, func_path[-1], lambda *args, **kwargs: self(*args, **kwargs))
      File "D:\Stable Diffusion AI\stable-diffusion-webui-directml\modules\sd_hijack_utils.py", line 34, in __call__
        return self.__sub_func(self.__orig_func, *args, **kwargs)
      File "D:\Stable Diffusion AI\stable-diffusion-webui-directml\modules\sd_hijack_unet.py", line 50, in apply_model
        result = orig_func(self, x_noisy.to(devices.dtype_unet), t.to(devices.dtype_unet), cond, **kwargs)
      File "D:\Stable Diffusion AI\stable-diffusion-webui-directml\modules\sd_hijack_utils.py", line 22, in <lambda>
        setattr(resolved_obj, func_path[-1], lambda *args, **kwargs: self(*args, **kwargs))
      File "D:\Stable Diffusion AI\stable-diffusion-webui-directml\modules\sd_hijack_utils.py", line 36, in __call__
        return self.__orig_func(*args, **kwargs)
      File "D:\Stable Diffusion AI\stable-diffusion-webui-directml\repositories\stable-diffusion-stability-ai\ldm\models\diffusion\ddpm.py", line 858, in apply_model
        x_recon = self.model(x_noisy, t, **cond)
      File "D:\Stable Diffusion AI\stable-diffusion-webui-directml\venv\lib\site-packages\torch\nn\modules\module.py", line 1751, in _wrapped_call_impl
        return self._call_impl(*args, **kwargs)
      File "D:\Stable Diffusion AI\stable-diffusion-webui-directml\venv\lib\site-packages\torch\nn\modules\module.py", line 1762, in _call_impl
        return forward_call(*args, **kwargs)
      File "D:\Stable Diffusion AI\stable-diffusion-webui-directml\repositories\stable-diffusion-stability-ai\ldm\models\diffusion\ddpm.py", line 1335, in forward
        out = self.diffusion_model(x, t, context=cc)
      File "D:\Stable Diffusion AI\stable-diffusion-webui-directml\venv\lib\site-packages\torch\nn\modules\module.py", line 1751, in _wrapped_call_impl
        return self._call_impl(*args, **kwargs)
      File "D:\Stable Diffusion AI\stable-diffusion-webui-directml\venv\lib\site-packages\torch\nn\modules\module.py", line 1762, in _call_impl
        return forward_call(*args, **kwargs)
      File "D:\Stable Diffusion AI\stable-diffusion-webui-directml\modules\sd_unet.py", line 91, in UNetModel_forward
        return original_forward(self, x, timesteps, context, *args, **kwargs)
      File "D:\Stable Diffusion AI\stable-diffusion-webui-directml\repositories\stable-diffusion-stability-ai\ldm\modules\diffusionmodules\openaimodel.py", line 797, in forward
        h = module(h, emb, context)
      File "D:\Stable Diffusion AI\stable-diffusion-webui-directml\venv\lib\site-packages\torch\nn\modules\module.py", line 1751, in _wrapped_call_impl
        return self._call_impl(*args, **kwargs)
      File "D:\Stable Diffusion AI\stable-diffusion-webui-directml\venv\lib\site-packages\torch\nn\modules\module.py", line 1857, in _call_impl
        return inner()
      File "D:\Stable Diffusion AI\stable-diffusion-webui-directml\venv\lib\site-packages\torch\nn\modules\module.py", line 1805, in inner
        result = forward_call(*args, **kwargs)
      File "D:\Stable Diffusion AI\stable-diffusion-webui-directml\repositories\stable-diffusion-stability-ai\ldm\modules\diffusionmodules\openaimodel.py", line 86, in forward
        x = layer(x)
      File "D:\Stable Diffusion AI\stable-diffusion-webui-directml\venv\lib\site-packages\torch\nn\modules\module.py", line 1751, in _wrapped_call_impl
        return self._call_impl(*args, **kwargs)
      File "D:\Stable Diffusion AI\stable-diffusion-webui-directml\venv\lib\site-packages\torch\nn\modules\module.py", line 1762, in _call_impl
        return forward_call(*args, **kwargs)
      File "D:\Stable Diffusion AI\stable-diffusion-webui-directml\extensions-builtin\Lora\networks.py", line 599, in network_Conv2d_forward
        return originals.Conv2d_forward(self, input)
      File "D:\Stable Diffusion AI\stable-diffusion-webui-directml\venv\lib\site-packages\torch\nn\modules\conv.py", line 554, in forward
        return self._conv_forward(input, self.weight, self.bias)
      File "D:\Stable Diffusion AI\stable-diffusion-webui-directml\venv\lib\site-packages\torch\nn\modules\conv.py", line 549, in _conv_forward
        return F.conv2d(
    RuntimeError: Input type (float) and bias type (struct c10::Half) should be the same

---

Additional information

i new user in this platform, idk about averything, if this problem can be solved, explain to me

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions