|
| 1 | +import numpy as np |
| 2 | +import deepxde as dde |
| 3 | +import variable_to_parameter_transform |
| 4 | +import jax.numpy as jnp |
| 5 | +import jax |
| 6 | + |
| 7 | + |
| 8 | +def sbinn(data_t, data_y, meal_t, meal_q): |
| 9 | + def get_variable(v, var): |
| 10 | + var = var |
| 11 | + low, up = v * 0.2, v * 1.8 |
| 12 | + l = (up - low) / 2 |
| 13 | + v1 = l * jnp.tanh(var) + l + low |
| 14 | + return v1 |
| 15 | + |
| 16 | + E_ = dde.Variable(0.0) |
| 17 | + tp_ = dde.Variable(0.0) |
| 18 | + ti_ = dde.Variable(0.0) |
| 19 | + td_ = dde.Variable(0.0) |
| 20 | + k_ = dde.Variable(0.0) |
| 21 | + Rm_ = dde.Variable(0.0) |
| 22 | + a1_ = dde.Variable(0.0) |
| 23 | + C1_ = dde.Variable(0.0) |
| 24 | + C2_ = dde.Variable(0.0) |
| 25 | + C4_ = dde.Variable(0.0) |
| 26 | + C5_ = dde.Variable(0.0) |
| 27 | + Ub_ = dde.Variable(0.0) |
| 28 | + U0_ = dde.Variable(0.0) |
| 29 | + Um_ = dde.Variable(0.0) |
| 30 | + Rg_ = dde.Variable(0.0) |
| 31 | + alpha_ = dde.Variable(0.0) |
| 32 | + beta_ = dde.Variable(0.0) |
| 33 | + |
| 34 | + var_list_ = [ |
| 35 | + E_, |
| 36 | + tp_, |
| 37 | + ti_, |
| 38 | + td_, |
| 39 | + k_, |
| 40 | + Rm_, |
| 41 | + a1_, |
| 42 | + C1_, |
| 43 | + C2_, |
| 44 | + C4_, |
| 45 | + C5_, |
| 46 | + Ub_, |
| 47 | + U0_, |
| 48 | + Um_, |
| 49 | + Rg_, |
| 50 | + alpha_, |
| 51 | + beta_, |
| 52 | + ] |
| 53 | + |
| 54 | + def ODE(t, y, unknowns=[var.value for var in var_list_]): |
| 55 | + ( |
| 56 | + E_, |
| 57 | + tp_, |
| 58 | + ti_, |
| 59 | + td_, |
| 60 | + k_, |
| 61 | + Rm_, |
| 62 | + a1_, |
| 63 | + C1_, |
| 64 | + C2_, |
| 65 | + C4_, |
| 66 | + C5_, |
| 67 | + Ub_, |
| 68 | + U0_, |
| 69 | + Um_, |
| 70 | + Rg_, |
| 71 | + alpha_, |
| 72 | + beta_, |
| 73 | + ) = unknowns |
| 74 | + if len(y[0].shape) == 1: |
| 75 | + Ip = y[0][0:1] |
| 76 | + Ii = y[0][1:2] |
| 77 | + G = y[0][2:3] |
| 78 | + h1 = y[0][3:4] |
| 79 | + h2 = y[0][4:5] |
| 80 | + h3 = y[0][5:6] |
| 81 | + else: |
| 82 | + Ip = y[0][:, 0:1] |
| 83 | + Ii = y[0][:, 1:2] |
| 84 | + G = y[0][:, 2:3] |
| 85 | + h1 = y[0][:, 3:4] |
| 86 | + h2 = y[0][:, 4:5] |
| 87 | + h3 = y[0][:, 5:6] |
| 88 | + |
| 89 | + Vp = 3 |
| 90 | + Vi = 11 |
| 91 | + Vg = 10 |
| 92 | + E = (jnp.tanh(E_) + 1) * 0.1 + 0.1 |
| 93 | + tp = (jnp.tanh(tp_) + 1) * 2 + 4 |
| 94 | + ti = (jnp.tanh(ti_) + 1) * 40 + 60 |
| 95 | + td = (jnp.tanh(td_) + 1) * 25 / 6 + 25 / 3 |
| 96 | + k = get_variable(0.0083, k_) |
| 97 | + Rm = get_variable(209, Rm_) |
| 98 | + a1 = get_variable(6.6, a1_) |
| 99 | + C1 = get_variable(300, C1_) |
| 100 | + C2 = get_variable(144, C2_) |
| 101 | + C3 = 100 |
| 102 | + C4 = get_variable(80, C4_) |
| 103 | + C5 = get_variable(26, C5_) |
| 104 | + Ub = get_variable(72, Ub_) |
| 105 | + U0 = get_variable(4, U0_) |
| 106 | + Um = get_variable(90, Um_) |
| 107 | + Rg = get_variable(180, Rg_) |
| 108 | + alpha = get_variable(7.5, alpha_) |
| 109 | + beta = get_variable(1.772, beta_) |
| 110 | + |
| 111 | + f1 = Rm * jax.nn.sigmoid(G / (Vg * C1) - a1) |
| 112 | + f2 = Ub * (1 - jnp.exp(-G / (Vg * C2))) |
| 113 | + kappa = (1 / Vi + 1 / (E * ti)) / C4 |
| 114 | + f3 = (U0 + Um / (1 + jnp.pow(jnp.maximum(kappa * Ii, 1e-3), -beta))) / (Vg * C3) |
| 115 | + f4 = Rg * jax.nn.sigmoid(alpha * (1 - h3 / (Vp * C5))) |
| 116 | + dt = t - meal_t |
| 117 | + IG = jnp.sum( |
| 118 | + 0.5 * meal_q * k * jnp.exp(-k * dt) * (jnp.sign(dt) + 1), |
| 119 | + axis=1, |
| 120 | + keepdims=True, |
| 121 | + ) |
| 122 | + tmp = E * (Ip / Vp - Ii / Vi) |
| 123 | + dIP_dt = dde.grad.jacobian(y, t, i=0, j=0)[0] |
| 124 | + dIi_dt = dde.grad.jacobian(y, t, i=1, j=0)[0] |
| 125 | + dG_dt = dde.grad.jacobian(y, t, i=2, j=0)[0] |
| 126 | + dh1_dt = dde.grad.jacobian(y, t, i=3, j=0)[0] |
| 127 | + dh2_dt = dde.grad.jacobian(y, t, i=4, j=0)[0] |
| 128 | + dh3_dt = dde.grad.jacobian(y, t, i=5, j=0)[0] |
| 129 | + return [ |
| 130 | + dIP_dt - (f1 - tmp - Ip / tp), |
| 131 | + dIi_dt - (tmp - Ii / ti), |
| 132 | + dG_dt - (f4 + IG - f2 - f3 * G), |
| 133 | + dh1_dt - (Ip - h1) / td, |
| 134 | + dh2_dt - (h1 - h2) / td, |
| 135 | + dh3_dt - (h2 - h3) / td, |
| 136 | + ] |
| 137 | + |
| 138 | + geom = dde.geometry.TimeDomain(data_t[0, 0], data_t[-1, 0]) |
| 139 | + |
| 140 | + # Observes |
| 141 | + n = len(data_t) |
| 142 | + idx = np.append( |
| 143 | + np.random.choice(np.arange(1, n - 1), size=n // 5, replace=False), [0, n - 1] |
| 144 | + ) |
| 145 | + observe_y2 = dde.PointSetBC(data_t[idx], data_y[idx, 2:3], component=2) |
| 146 | + |
| 147 | + np.savetxt("glucose_input.dat", np.hstack((data_t[idx], data_y[idx, 2:3]))) |
| 148 | + |
| 149 | + data = dde.data.PDE(geom, ODE, [observe_y2], anchors=data_t) |
| 150 | + |
| 151 | + net = dde.maps.FNN([1] + [128] * 3 + [6], "swish", "Glorot normal") |
| 152 | + |
| 153 | + def feature_transform(t): |
| 154 | + t = 0.01 * t |
| 155 | + return jnp.concat( |
| 156 | + ( |
| 157 | + t, |
| 158 | + jnp.sin(t), |
| 159 | + jnp.sin(2 * t), |
| 160 | + jnp.sin(3 * t), |
| 161 | + jnp.sin(4 * t), |
| 162 | + jnp.sin(5 * t), |
| 163 | + ), |
| 164 | + axis=1, |
| 165 | + ) |
| 166 | + |
| 167 | + net.apply_feature_transform(feature_transform) |
| 168 | + |
| 169 | + def output_transform(t, y): |
| 170 | + idx = 1799 |
| 171 | + k = (data_y[idx] - data_y[0]) / (data_t[idx] - data_t[0]) |
| 172 | + b = (data_t[idx] * data_y[0] - data_t[0] * data_y[idx]) / ( |
| 173 | + data_t[idx] - data_t[0] |
| 174 | + ) |
| 175 | + linear = k * t + b |
| 176 | + factor = jnp.tanh(t) * jnp.tanh(idx - t) |
| 177 | + return linear + factor * jnp.array([1, 1, 1e2, 1, 1, 1]) * y |
| 178 | + |
| 179 | + net.apply_output_transform(output_transform) |
| 180 | + |
| 181 | + model = dde.Model(data, net) |
| 182 | + |
| 183 | + firsttrain = 10000 |
| 184 | + callbackperiod = 1000 |
| 185 | + maxepochs = 1000000 |
| 186 | + |
| 187 | + model.compile("adam", lr=1e-3, loss_weights=[0, 0, 0, 0, 0, 0, 1e-2]) |
| 188 | + model.train(iterations=firsttrain, display_every=1000) |
| 189 | + model.compile( |
| 190 | + "adam", |
| 191 | + lr=1e-3, |
| 192 | + loss_weights=[1, 1, 1e-2, 1, 1, 1, 1e-2], |
| 193 | + external_trainable_variables=var_list_, |
| 194 | + ) |
| 195 | + variablefilename = "variables.csv" |
| 196 | + variable = dde.callbacks.VariableValue( |
| 197 | + var_list_, period=callbackperiod, filename=variablefilename |
| 198 | + ) |
| 199 | + losshistory, train_state = model.train( |
| 200 | + iterations=maxepochs, display_every=1000, callbacks=[variable] |
| 201 | + ) |
| 202 | + |
| 203 | + dde.saveplot(losshistory, train_state, issave=True, isplot=True) |
| 204 | + |
| 205 | + |
| 206 | +gluc_data = np.hsplit(np.loadtxt("glucose.dat"), [1]) |
| 207 | +meal_data = np.hsplit(np.loadtxt("meal.dat"), [4]) |
| 208 | + |
| 209 | +t = gluc_data[0] |
| 210 | +y = gluc_data[1] |
| 211 | +meal_t = meal_data[0] |
| 212 | +meal_q = meal_data[1] |
| 213 | + |
| 214 | +sbinn( |
| 215 | + t[:1800], |
| 216 | + y[:1800], |
| 217 | + meal_t, |
| 218 | + meal_q, |
| 219 | +) |
| 220 | + |
| 221 | +variable_to_parameter_transform.variable_file(10000, 1000, 1000000, "variables.csv") |
0 commit comments