Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
221 changes: 221 additions & 0 deletions sbinn/sbinn_jax.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,221 @@
import numpy as np
import deepxde as dde
import variable_to_parameter_transform
import jax.numpy as jnp
import jax


def sbinn(data_t, data_y, meal_t, meal_q):
def get_variable(v, var):
var = var
low, up = v * 0.2, v * 1.8
l = (up - low) / 2
v1 = l * jnp.tanh(var) + l + low
return v1

E_ = dde.Variable(0.0)
tp_ = dde.Variable(0.0)
ti_ = dde.Variable(0.0)
td_ = dde.Variable(0.0)
k_ = dde.Variable(0.0)
Rm_ = dde.Variable(0.0)
a1_ = dde.Variable(0.0)
C1_ = dde.Variable(0.0)
C2_ = dde.Variable(0.0)
C4_ = dde.Variable(0.0)
C5_ = dde.Variable(0.0)
Ub_ = dde.Variable(0.0)
U0_ = dde.Variable(0.0)
Um_ = dde.Variable(0.0)
Rg_ = dde.Variable(0.0)
alpha_ = dde.Variable(0.0)
beta_ = dde.Variable(0.0)

var_list_ = [
E_,
tp_,
ti_,
td_,
k_,
Rm_,
a1_,
C1_,
C2_,
C4_,
C5_,
Ub_,
U0_,
Um_,
Rg_,
alpha_,
beta_,
]

def ODE(t, y, unknowns=[var.value for var in var_list_]):
(
E_,
tp_,
ti_,
td_,
k_,
Rm_,
a1_,
C1_,
C2_,
C4_,
C5_,
Ub_,
U0_,
Um_,
Rg_,
alpha_,
beta_,
) = unknowns
if len(y[0].shape) == 1:
Ip = y[0][0:1]
Ii = y[0][1:2]
G = y[0][2:3]
h1 = y[0][3:4]
h2 = y[0][4:5]
h3 = y[0][5:6]
else:
Ip = y[0][:, 0:1]
Ii = y[0][:, 1:2]
G = y[0][:, 2:3]
h1 = y[0][:, 3:4]
h2 = y[0][:, 4:5]
h3 = y[0][:, 5:6]

Vp = 3
Vi = 11
Vg = 10
E = (jnp.tanh(E_) + 1) * 0.1 + 0.1
tp = (jnp.tanh(tp_) + 1) * 2 + 4
ti = (jnp.tanh(ti_) + 1) * 40 + 60
td = (jnp.tanh(td_) + 1) * 25 / 6 + 25 / 3
k = get_variable(0.0083, k_)
Rm = get_variable(209, Rm_)
a1 = get_variable(6.6, a1_)
C1 = get_variable(300, C1_)
C2 = get_variable(144, C2_)
C3 = 100
C4 = get_variable(80, C4_)
C5 = get_variable(26, C5_)
Ub = get_variable(72, Ub_)
U0 = get_variable(4, U0_)
Um = get_variable(90, Um_)
Rg = get_variable(180, Rg_)
alpha = get_variable(7.5, alpha_)
beta = get_variable(1.772, beta_)

f1 = Rm * jax.nn.sigmoid(G / (Vg * C1) - a1)
f2 = Ub * (1 - jnp.exp(-G / (Vg * C2)))
kappa = (1 / Vi + 1 / (E * ti)) / C4
f3 = (U0 + Um / (1 + jnp.pow(jnp.maximum(kappa * Ii, 1e-3), -beta))) / (Vg * C3)
f4 = Rg * jax.nn.sigmoid(alpha * (1 - h3 / (Vp * C5)))
dt = t - meal_t
IG = jnp.sum(
0.5 * meal_q * k * jnp.exp(-k * dt) * (jnp.sign(dt) + 1),
axis=1,
keepdims=True,
)
tmp = E * (Ip / Vp - Ii / Vi)
dIP_dt = dde.grad.jacobian(y, t, i=0, j=0)[0]
dIi_dt = dde.grad.jacobian(y, t, i=1, j=0)[0]
dG_dt = dde.grad.jacobian(y, t, i=2, j=0)[0]
dh1_dt = dde.grad.jacobian(y, t, i=3, j=0)[0]
dh2_dt = dde.grad.jacobian(y, t, i=4, j=0)[0]
dh3_dt = dde.grad.jacobian(y, t, i=5, j=0)[0]
return [
dIP_dt - (f1 - tmp - Ip / tp),
dIi_dt - (tmp - Ii / ti),
dG_dt - (f4 + IG - f2 - f3 * G),
dh1_dt - (Ip - h1) / td,
dh2_dt - (h1 - h2) / td,
dh3_dt - (h2 - h3) / td,
]

geom = dde.geometry.TimeDomain(data_t[0, 0], data_t[-1, 0])

# Observes
n = len(data_t)
idx = np.append(
np.random.choice(np.arange(1, n - 1), size=n // 5, replace=False), [0, n - 1]
)
observe_y2 = dde.PointSetBC(data_t[idx], data_y[idx, 2:3], component=2)

np.savetxt("glucose_input.dat", np.hstack((data_t[idx], data_y[idx, 2:3])))

data = dde.data.PDE(geom, ODE, [observe_y2], anchors=data_t)

net = dde.maps.FNN([1] + [128] * 3 + [6], "swish", "Glorot normal")

def feature_transform(t):
t = 0.01 * t
return jnp.concat(
(
t,
jnp.sin(t),
jnp.sin(2 * t),
jnp.sin(3 * t),
jnp.sin(4 * t),
jnp.sin(5 * t),
),
axis=1,
)

net.apply_feature_transform(feature_transform)

def output_transform(t, y):
idx = 1799
k = (data_y[idx] - data_y[0]) / (data_t[idx] - data_t[0])
b = (data_t[idx] * data_y[0] - data_t[0] * data_y[idx]) / (
data_t[idx] - data_t[0]
)
linear = k * t + b
factor = jnp.tanh(t) * jnp.tanh(idx - t)
return linear + factor * jnp.array([1, 1, 1e2, 1, 1, 1]) * y

net.apply_output_transform(output_transform)

model = dde.Model(data, net)

firsttrain = 10000
callbackperiod = 1000
maxepochs = 1000000

model.compile("adam", lr=1e-3, loss_weights=[0, 0, 0, 0, 0, 0, 1e-2])
model.train(iterations=firsttrain, display_every=1000)
model.compile(
"adam",
lr=1e-3,
loss_weights=[1, 1, 1e-2, 1, 1, 1, 1e-2],
external_trainable_variables=var_list_,
)
variablefilename = "variables.csv"
variable = dde.callbacks.VariableValue(
var_list_, period=callbackperiod, filename=variablefilename
)
losshistory, train_state = model.train(
iterations=maxepochs, display_every=1000, callbacks=[variable]
)

dde.saveplot(losshistory, train_state, issave=True, isplot=True)


gluc_data = np.hsplit(np.loadtxt("glucose.dat"), [1])
meal_data = np.hsplit(np.loadtxt("meal.dat"), [4])

t = gluc_data[0]
y = gluc_data[1]
meal_t = meal_data[0]
meal_q = meal_data[1]

sbinn(
t[:1800],
y[:1800],
meal_t,
meal_q,
)

variable_to_parameter_transform.variable_file(10000, 1000, 1000000, "variables.csv")