Skip to content
afiaka87 edited this page Apr 12, 2021 · 10 revisions

Deepspeed Sparse Attention

You can also train with Microsoft Deepspeed's Sparse Attention, with any combination of dense and sparse attention that you'd like. However, you will have to endure the installation process.

If everything installed correctly you now have access to a few new features:

Sparse Attention (CUDA 10.1 Only)

dalle = DALLE(
    dim = 512,
    depth = 64,
    heads = 8,
    attn_types = ('full', 'sparse')  # interleave sparse and dense attention for 64 layers
)

Train on multiple GPUS at once

You should now run all training sessions with deepspeed instead of python if you wish to make use of its distributed features. deepspeed train_dalle.py <...> --distributed_backend deepspeed

Train with floating point 16:

deepspeed train_dalle.py <...> --distributed_backend --deepspeed --fp16

Train with ZeRO by modifying deepspeed_config:

Zero stages 1-3 have been confirmed to work (for us) when using V100, A100, RTX3090:

FP16

To use floating-point-16, simply pass --fp16 to train_dalle.py

deepspeed train_dalle.py --image_text_folder=/path/to/your/dataset --distributed_backend --deepspeed --fp16

Stage 1

Stage 2

Stage 2 will try to use gradient_accumulate in order to fill up the VRAM of each GPU more effectively. You may also optionally enable cpu_offload at this point in order to use the CPU-based Adam which deepspeed provides.

deepspeed_config = {
    "zero_optimization": {
        "stage": 2,
        "cpu_offload": True
    },
    'train_batch_size': BATCH_SIZE,
    'gradient_clipping': GRAD_CLIP_NORM,
    'fp16': {
        'enabled': args.fp16,
    },
}

Stage 3