-
Notifications
You must be signed in to change notification settings - Fork 402
/
Copy pathconfig.py
381 lines (336 loc) · 17 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
"""
* This file is part of PYSLAM
*
* Copyright (C) 2016-present Luigi Freda <luigi dot freda at gmail dot com>
*
* PYSLAM is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* PYSLAM is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with PYSLAM. If not, see <http://www.gnu.org/licenses/>.
"""
import sys
if sys.version_info[0] != 3:
print("This script requires Python 3")
exit()
import os
import yaml
import numpy as np
from utilities.utils_sys import Printer, locally_configure_qt_environment
import math
# N.B.: this file must stay in the root folder of the repository
# get the folder location of this file!
kThisFileLocation = os.path.realpath(os.path.join(os.getcwd(), os.path.dirname(__file__)))
kRootFolder = kThisFileLocation
kDefaultConfigPath = os.path.join(kRootFolder,'config.yaml')
kDefaultConfigLibsPath = os.path.join(kRootFolder,'config_libs.yaml')
# Class for reading libs, dataset, system, and camera settings (from config.yaml) from yaml files.
# Input:
# config_path: path to config yaml file where dataset, system, and camera settings are stored
# config_libs_path: path to config libs yaml file where lib paths are stored
class Config:
def __init__(self,
config_path=kDefaultConfigPath,
config_libs_path=kDefaultConfigLibsPath,
root_folder=kRootFolder):
self.root_folder = root_folder
self.config_path = config_path # path to config.yaml: dataset, system, and camera settings
self.config_libs_path = config_libs_path # path to config_libs.yaml: lib paths
self.config = yaml.load(open(self.config_path, 'r'), Loader=yaml.FullLoader)
self.config_libs = yaml.load(open(self.config_libs_path, 'r'), Loader=yaml.FullLoader)
self.cam_settings = None
self.system_settings = None
self.dataset_settings = None
self.dataset_type = None
self.sensor_type = None
self.system_state_settings = None
self.system_state_folder_path = None
self.system_state_load = False
self.ros_settings = {}
self.trajectory_saving_settings = None
self.start_frame_id = 0
#locally_configure_qt_environment()
self.set_core_lib_paths()
self.read_lib_paths()
self.get_dataset_settings()
self.get_general_system_settings()
self.get_system_state_settings()
self.get_trajectory_saving_settings()
self.get_and_set_global_parameters()
# read core lib paths from config.yaml and set sys paths
def set_core_lib_paths(self):
self.core_lib_paths = self.config_libs['CORE_LIB_PATHS']
for path in self.core_lib_paths:
ext_path = self.root_folder + '/' + self.core_lib_paths[path]
#print( "importing path: ", ext_path )
sys.path.append(ext_path)
# read lib paths from config.yaml
def read_lib_paths(self):
self.lib_paths = self.config_libs['LIB_PATHS']
# set sys path of lib
def set_lib(self,lib_name,prepend=False,verbose=False):
ext_path = None
if lib_name in self.lib_paths:
lib_paths = [e.strip() for e in self.lib_paths[lib_name].split(',')]
#print('setting lib paths:',lib_paths)
for lib_path in lib_paths:
ext_path = self.root_folder + '/' + lib_path
#print( "importing path: ", ext_path )
if not prepend:
sys.path.append(ext_path)
else:
sys.path.insert(0,ext_path)
if verbose:
print('[Config] adding path: ', ext_path)
else:
print('cannot set lib: ', lib_name)
return ext_path
def remove_lib(self,lib_name,verbose=False):
if lib_name in self.lib_paths:
lib_paths = [e.strip() for e in self.lib_paths[lib_name].split(',')]
for lib_path in lib_paths:
ext_path = self.root_folder + '/' + lib_path
if verbose:
print('[Config] removing path: ', ext_path)
sys.path.remove(ext_path)
# get dataset settings
def get_dataset_settings(self):
self.dataset_type = self.config['DATASET']['type']
self.dataset_settings = self.config[self.dataset_type]
self.sensor_type = self.dataset_settings['sensor_type'].lower()
self.dataset_path = self.dataset_settings['base_path']
self.dataset_settings['base_path'] = os.path.join( self.root_folder, self.dataset_path)
#print('dataset_settings: ', self.dataset_settings)
str_dataset_settings_type = self.dataset_settings['type'].lower()
if str_dataset_settings_type == 'ros1bag' or str_dataset_settings_type == 'ros2bag':
self.get_ros_bag_settings()
# get general system settings
def get_general_system_settings(self):
self.system_settings = None
input_settings_path = self.config[self.dataset_type]['settings']
if not os.path.isabs(input_settings_path):
input_settings_path = os.path.join(self.root_folder, input_settings_path)
self.general_settings_filepath = input_settings_path
# If sensor is stereo and stereo settings exist, use stereo settings
if self.sensor_type == 'stereo' and 'settings_stereo' in self.config[self.dataset_type]:
input_stereo_settings_path = self.config[self.dataset_type]['settings_stereo']
if not os.path.isabs(input_stereo_settings_path):
input_stereo_settings_path = os.path.join(self.root_folder, input_stereo_settings_path)
self.general_settings_filepath = input_stereo_settings_path
Printer.orange('[Config] Using stereo settings file: ' + self.general_settings_filepath)
print('------------------------------------')
if(self.general_settings_filepath is not None):
with open(self.general_settings_filepath, 'r') as stream:
try:
self.system_settings = yaml.load(stream, Loader=yaml.FullLoader)
except yaml.YAMLError as exc:
print(exc)
self.cam_settings = self.system_settings
def get_system_state_settings(self):
self.system_state_settings = self.config['SYSTEM_STATE']
self.system_state_load = self.system_state_settings['load_state']
self.system_state_folder_path = self.root_folder + '/' + self.system_state_settings['folder_path']
folder_path_exists = os.path.exists(self.system_state_folder_path)
folder_path_is_not_empty = os.path.getsize(self.system_state_folder_path) > 0 if folder_path_exists else False
if self.system_state_load and not(folder_path_exists and folder_path_is_not_empty):
Printer.red('[Config] System state folder does not exist or is empty: ' + self.system_state_folder_path)
self.system_state_load = False
# get trajectory save settings
def get_trajectory_saving_settings(self):
self.trajectory_saving_settings = self.config['SAVE_TRAJECTORY']
def get_trajectory_saving_paths(self, datatime_string=None):
dt_string = '' if datatime_string is None else '_' + datatime_string
trajectory_saving_base_path = self.trajectory_saving_settings['output_folder'] + dt_string
trajectory_online_file_path = trajectory_saving_base_path + '/' + self.trajectory_saving_settings['basename'] + '_online.txt' # online estimates (depend only on the past estimates)
trajectory_final_file_path = trajectory_saving_base_path + '/' + self.trajectory_saving_settings['basename'] + '_final.txt' # final estimates (depend on the past and future estimates)
return trajectory_online_file_path, trajectory_final_file_path, trajectory_saving_base_path
def get_and_set_global_parameters(self):
# for changing the global parameters default values from the config file
self.global_parameters = self.config['GLOBAL_PARAMETERS']
if self.global_parameters is not None:
Printer.orange('[Config] Setting global parameters: ', self.global_parameters)
from config_parameters import Parameters, set_from_dict
set_from_dict(Parameters, self.global_parameters)
def get_ros_bag_settings(self):
self.ros_settings = self.config[self.dataset_type]['ros_settings']
self.ros_settings['bag_path'] = os.path.join( self.dataset_settings['base_path'], self.dataset_settings['name'])
#print(f'ROS settings: {self.ros_settings}')
# calibration matrix
@property
def K(self):
if not hasattr(self, '_K'):
fx = self.cam_settings['Camera.fx']
cx = self.cam_settings['Camera.cx']
fy = self.cam_settings['Camera.fy']
cy = self.cam_settings['Camera.cy']
self._K = np.array([[fx, 0, cx],
[ 0, fy, cy],
[ 0, 0, 1]])
return self._K
# inverse of calibration matrix
@property
def Kinv(self):
if not hasattr(self, '_Kinv'):
fx = self.cam_settings['Camera.fx']
cx = self.cam_settings['Camera.cx']
fy = self.cam_settings['Camera.fy']
cy = self.cam_settings['Camera.cy']
self._Kinv = np.array([[1/fx, 0, -cx/fx],
[ 0, 1/fy, -cy/fy],
[ 0, 0, 1]])
return self._Kinv
# distortion coefficients
@property
def DistCoef(self):
if not hasattr(self, '_DistCoef'):
k1 = self.cam_settings['Camera.k1']
k2 = self.cam_settings['Camera.k2']
p1 = self.cam_settings['Camera.p1']
p2 = self.cam_settings['Camera.p2']
k3 = 0
if 'Camera.k3' in self.cam_settings:
k3 = self.cam_settings['Camera.k3']
self._DistCoef = np.array([k1, k2, p1, p2, k3])
if self.sensor_type == 'stereo':
self._DistCoef = np.array([0, 0, 0, 0, 0])
Printer.orange('[Config] WARNING: Using stereo camera, images are automatically rectified, and DistCoef is set to [0,0,0,0,0]')
return self._DistCoef
# baseline times fx
@property
def bf(self):
if not hasattr(self, '_bf'):
self._bf = self.cam_settings['Camera.bf']
return self._bf
# camera width
@property
def width(self):
if not hasattr(self, '_width'):
self._width = self.cam_settings['Camera.width']
return self._width
# camera height
@property
def height(self):
if not hasattr(self, '_height'):
self._height = self.cam_settings['Camera.height']
return self._height
# camera fps
@property
def fps(self):
if not hasattr(self, '_fps'):
self._fps= self.cam_settings['Camera.fps']
return self._fps
# depth factor
@property
def depth_factor(self):
if not hasattr(self, '_depth_factor'):
if 'Camera.DepthMapFactor' in self.cam_settings:
self._depth_factor = self.cam_settings['Camera.DepthMapFactor']
else:
self._depth_factor = 1.0
return self._depth_factor
@property
def depth_threshold(self):
if not hasattr(self, '_depth_threshold'):
if 'Camera.ThDepth' in self.cam_settings:
self._depth_threshold = self.cam_settings['Camera.ThDepth']
else:
self._depth_threshold = float('inf')
return self._depth_threshold
@property
def num_features_to_extract(self):
if not hasattr(self, '_num_features_to_extract'):
if 'FeatureTrackerConfig.nFeatures' in self.system_settings:
self._num_features_to_extract = self.system_settings['FeatureTrackerConfig.nFeatures']
else:
self._num_features_to_extract = 0
return self._num_features_to_extract
@property
def feature_tracker_config_name(self):
if not hasattr(self, '_feature_tracker_config_name'):
if 'FeatureTrackerConfig.name' in self.system_settings:
self._feature_tracker_config_name = self.system_settings['FeatureTrackerConfig.name']
else:
self._feature_tracker_config_name = None
return self._feature_tracker_config_name
@property
def loop_detection_config_name(self):
if not hasattr(self, '_loop_detection_config_name'):
if 'LoopDetectionConfig.name' in self.system_settings:
self._loop_detection_config_name = self.system_settings['LoopDetectionConfig.name']
else:
self._loop_detection_config_name = None
return self._loop_detection_config_name
@property
def far_points_threshold(self):
if not hasattr(self, '_far_points_threshold'):
if 'Matching.farPointsThreshold' in self.system_settings:
self._far_points_threshold = self.system_settings['Matching.farPointsThreshold']
else:
self._far_points_threshold = None
return self._far_points_threshold
@property
def use_fov_centers_based_kf_generation(self):
if not hasattr(self, '_use_fov_centers_based_kf_generation'):
self._use_fov_centers_based_kf_generation = False
if 'KeyFrame.useFovCentersBasedGeneration' in self.system_settings:
self._use_fov_centers_based_kf_generation = bool(self.system_settings['KeyFrame.useFovCentersBasedGeneration'])
return self._use_fov_centers_based_kf_generation
@property
def max_fov_centers_distance(self):
if not hasattr(self, '_max_fov_centers_distance'):
self._max_fov_centers_distance = -1
if 'KeyFrame.maxFovCentersDistance' in self.system_settings:
self._max_fov_centers_distance = self.system_settings['KeyFrame.maxFovCentersDistance']
return self._max_fov_centers_distance
# stereo settings
@property
def cam_stereo_settings(self):
if not hasattr(self, '_cam_stereo_settings'):
self._cam_stereo_settings = None
left, right = {}, {}
if 'LEFT.D' in self.cam_settings:
left_D = self.cam_settings['LEFT.D']
left_D = np.array(left_D['data'],dtype=float).reshape(left_D['rows'], left_D['cols'])
left['D'] = left_D
if 'LEFT.K' in self.cam_settings:
left_K = self.cam_settings['LEFT.K']
left_K = np.array(left_K['data'],dtype=float).reshape(left_K['rows'], left_K['cols'])
left['K'] = left_K
if 'LEFT.R' in self.cam_settings:
left_R = self.cam_settings['LEFT.R']
left_R = np.array(left_R['data'],dtype=float).reshape(left_R['rows'], left_R['cols'])
left['R'] = left_R
if 'LEFT.P' in self.cam_settings:
left_P = self.cam_settings['LEFT.P']
left_P = np.array(left_P['data'],dtype=float).reshape(left_P['rows'], left_P['cols'])
left['P'] = left_P
if 'RIGHT.D' in self.cam_settings:
right_D = self.cam_settings['RIGHT.D']
right_D = np.array(right_D['data'],dtype=float).reshape(right_D['rows'], right_D['cols'])
right['D'] = right_D
if 'RIGHT.K' in self.cam_settings:
right_K = self.cam_settings['RIGHT.K']
right_K = np.array(right_K['data'],dtype=float).reshape(right_K['rows'], right_K['cols'])
right['K'] = right_K
if 'RIGHT.R' in self.cam_settings:
right_R = self.cam_settings['RIGHT.R']
right_R = np.array(right_R['data'],dtype=float).reshape(right_R['rows'], right_R['cols'])
right['R'] = right_R
if 'RIGHT.P' in self.cam_settings:
right_P = self.cam_settings['RIGHT.P']
right_P = np.array(right_P['data'],dtype=float).reshape(right_P['rows'], right_P['cols'])
right['P'] = right_P
if len(left) > 0 and len(right) > 0:
self._cam_stereo_settings = {'left':left, 'right':right}
#print(f'[config] stereo settings: {self._cam_stereo_settings}')
return self._cam_stereo_settings
if __name__ != "__main__":
# We automatically read and set lib paths when this file is called via 'import'
cfg = Config()