|
| 1 | +import paddle |
| 2 | + |
| 3 | +from .nn import NN |
| 4 | +from .. import activations |
| 5 | +from .. import initializers |
| 6 | +from .. import regularizers |
| 7 | +from ... import config |
| 8 | + |
| 9 | + |
| 10 | +class MfNN(NN): |
| 11 | + """Multifidelity neural networks.""" |
| 12 | + |
| 13 | + def __init__( |
| 14 | + self, |
| 15 | + layer_sizes_low_fidelity, |
| 16 | + layer_sizes_high_fidelity, |
| 17 | + activation, |
| 18 | + kernel_initializer, |
| 19 | + regularization=None, |
| 20 | + residue=False, |
| 21 | + trainable_low_fidelity=True, |
| 22 | + trainable_high_fidelity=True, |
| 23 | + ): |
| 24 | + super().__init__() |
| 25 | + self.layer_size_lo = layer_sizes_low_fidelity |
| 26 | + self.layer_size_hi = layer_sizes_high_fidelity |
| 27 | + |
| 28 | + self.activation = activations.get(activation) |
| 29 | + self.initializer = initializers.get(kernel_initializer) |
| 30 | + self.trainable_lo = trainable_low_fidelity |
| 31 | + self.trainable_hi = trainable_high_fidelity |
| 32 | + self.residue = residue |
| 33 | + self.regularizer = regularizers.get(regularization) |
| 34 | + |
| 35 | + # low fidelity |
| 36 | + self.linears_lo = self._init_dense(self.layer_size_lo, self.trainable_lo) |
| 37 | + |
| 38 | + # high fidelity |
| 39 | + # linear part |
| 40 | + self.linears_hi_l = paddle.nn.Linear( |
| 41 | + in_features=self.layer_size_lo[0] + self.layer_size_lo[-1], |
| 42 | + out_features=self.layer_size_hi[-1], |
| 43 | + weight_attr=paddle.ParamAttr(initializer=self.initializer), |
| 44 | + ) |
| 45 | + if not self.trainable_hi: |
| 46 | + for param in self.linears_hi_l.parameters(): |
| 47 | + param.stop_gradient = False |
| 48 | + # nonlinear part |
| 49 | + self.layer_size_hi = [ |
| 50 | + self.layer_size_lo[0] + self.layer_size_lo[-1] |
| 51 | + ] + self.layer_size_hi |
| 52 | + self.linears_hi = self._init_dense(self.layer_size_hi, self.trainable_hi) |
| 53 | + # linear + nonlinear |
| 54 | + if not self.residue: |
| 55 | + alpha = self._init_alpha(0.0, self.trainable_hi) |
| 56 | + self.add_parameter("alpha", alpha) |
| 57 | + else: |
| 58 | + alpha1 = self._init_alpha(0.0, self.trainable_hi) |
| 59 | + alpha2 = self._init_alpha(0.0, self.trainable_hi) |
| 60 | + self.add_parameter("alpha1", alpha1) |
| 61 | + self.add_parameter("alpha2", alpha2) |
| 62 | + |
| 63 | + def _init_dense(self, layer_size, trainable): |
| 64 | + linears = paddle.nn.LayerList() |
| 65 | + for i in range(len(layer_size) - 1): |
| 66 | + linear = paddle.nn.Linear( |
| 67 | + in_features=layer_size[i], |
| 68 | + out_features=layer_size[i + 1], |
| 69 | + weight_attr=paddle.ParamAttr(initializer=self.initializer), |
| 70 | + ) |
| 71 | + if not trainable: |
| 72 | + for param in linear.parameters(): |
| 73 | + param.stop_gradient = False |
| 74 | + linears.append(linear) |
| 75 | + return linears |
| 76 | + |
| 77 | + def _init_alpha(self, value, trainable): |
| 78 | + alpha = paddle.create_parameter( |
| 79 | + shape=[1], |
| 80 | + dtype=config.real(paddle), |
| 81 | + default_initializer=paddle.nn.initializer.Constant(value), |
| 82 | + ) |
| 83 | + alpha.stop_gradient = not trainable |
| 84 | + return alpha |
| 85 | + |
| 86 | + def forward(self, inputs): |
| 87 | + # low fidelity |
| 88 | + y = inputs |
| 89 | + for i, linear in enumerate(self.linears_lo): |
| 90 | + y = linear(y) |
| 91 | + if i != len(self.linears_lo) - 1: |
| 92 | + y = self.activation(y) |
| 93 | + y_lo = y |
| 94 | + |
| 95 | + # high fidelity |
| 96 | + x_hi = paddle.concat([inputs, y_lo], axis=1) |
| 97 | + # linear |
| 98 | + y_hi_l = self.linears_hi_l(x_hi) |
| 99 | + # nonlinear |
| 100 | + y = x_hi |
| 101 | + for i, linear in enumerate(self.linears_hi): |
| 102 | + y = linear(y) |
| 103 | + if i != len(self.linears_hi) - 1: |
| 104 | + y = self.activation(y) |
| 105 | + y_hi_nl = y |
| 106 | + # linear + nonlinear |
| 107 | + if not self.residue: |
| 108 | + alpha = paddle.tanh(self.alpha) |
| 109 | + y_hi = y_hi_l + alpha * y_hi_nl |
| 110 | + else: |
| 111 | + alpha1 = paddle.tanh(self.alpha1) |
| 112 | + alpha2 = paddle.tanh(self.alpha2) |
| 113 | + y_hi = y_lo + 0.1 * (alpha1 * y_hi_l + alpha2 * y_hi_nl) |
| 114 | + |
| 115 | + return y_lo, y_hi |
0 commit comments