You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
`Center of Applied Ecology and Sustainability <https://investigacion.uc.cl/en/centros-de-excelencia/center-of-applied-ecology-and-sustainability-capes>`_
55
+
`Center of Applied Ecology and Sustainability <https://investigacion.uc.cl/en/centros-de-excelencia/center-of-applied-ecology-and-sustainability-capes>`_,
56
+
`NEC Lab Europe <https://www.neclab.eu/>`_,
57
+
`CSIRO’s Data61 <https://data61.csiro.au/>`_
55
58
- industry, e.g.,
56
59
`Anailytica <https://anailytica.com>`_,
57
60
`Ansys <https://www.ansys.com>`_,
@@ -65,16 +68,17 @@ PINN
65
68
----
66
69
67
70
#. C. Wu, M. Zhu, Q. Tan, Y. Kartha, & L. Lu. `A comprehensive study of non-adaptive and residual-based adaptive sampling for physics-informed neural networks <https://doi.org/10.1016/j.cma.2022.115671>`_. *Computer Methods in Applied Mechanics and Engineering*, 403, 115671, 2023.
68
-
#. Y. Wang, X. Han, C. Chang, D. Zha, U. Braga-Neto, & X. Hu. `Auto-PINN: Understanding and optimizing physics-informed neural architecture <https://arxiv.org/abs/2205.13748>`_. *arXiv preprint arXiv:2205.13748*, 2022.
71
+
#. A. Serebrennikova, R. Teubler, L. Hoffellner, E. Leitner, U. Hirn, & K. Zojer. `Transport of organic volatiles through paper: Physics-informed neural networks for solving inverse and forward problems <https://link.springer.com/article/10.1007/s11242-022-01864-7>`_. *Transport in Porous Media*, 1-24, 2022.
72
+
#. C. Garcia-Cervera, M. Kessler, & F. Periago. `Control of partial differential equations via physics-informed neural networks <https://link.springer.com/article/10.1007/s10957-022-02100-4>`_. *Journal of Optimization Theory and Applications*, 1-24, 2022.
73
+
#. M. Takamoto, T. Praditia, R. Leiteritz, D. MacKinlay, F. Alesiani, D. Pflüger, & M. Niepert. `PDEBENCH: An Extensive Benchmark for Scientific Machine Learning <https://arxiv.org/abs/2210.07182>`_. *arXiv preprint arXiv:2210.07182*, 2022.
69
74
#. X. Wang, J. Li, & J. Li. `A deep learning based numerical PDE method for option pricing <https://link.springer.com/article/10.1007/s10614-022-10279-x>`_. *Computational Economics*, 1-16, 2022.
70
-
#. A. Serebrennikova, R. Teubler, L. Hoffellner, E. Leitner, U. Hirn, & K. Zojer. `Transport of organic volatiles through paper: Physics-informed neural networks for solving inverse and forward problems <https://www.researchgate.net/profile/Alexandra-Serebrennikova/publication/360717115_Transport_of_organic_volatiles_through_paper_physics-informed_neural_networks_for_solving_inverse_and_forward_problems/links/6286753e8ecbaa07fcc19c64/Transport-of-organic-volatiles-through-paper-physics-informed-neural-networks-for-solving-inverse-and-forward-problems.pdf>`_. 2022.
75
+
#. Y. Wang, X. Han, C. Chang, D. Zha, U. Braga-Neto, & X. Hu. `Auto-PINN: Understanding and optimizing physics-informed neural architecture <https://arxiv.org/abs/2205.13748>`_. *arXiv preprint arXiv:2205.13748*, 2022.
71
76
#. A. Cornell, A. Ncube, & G. Harmsen. `Determining QNMs using PINNs <https://arxiv.org/pdf/2205.08284.pdf>`_. *arXiv preprint arXiv:2205.08284*, 2022.
72
77
#. L. Guo, H. Wu, X. Yu, & T. Zhou. `Monte Carlo PINNs: Deep learning approach for forward and inverse problems involving high dimensional fractional partial differential equations <https://arxiv.org/pdf/2203.08501.pdf>`_. *arXiv preprint arXiv:2203.08501*, 2022.
73
78
#. P. Escapil-Inchauspé, & G. A. Ruz. `Hyper-parameter tuning of physics-informed neural networks: Application to Helmholtz problems <https://arxiv.org/pdf/2205.06704.pdf>`_. *arXiv preprint arXiv:2205.06704*, 2022.
74
79
#. H. Xie, C. Zhai, L. Liu, & H. Yong. `A weighted first-order formulation for solving anisotropic diffusion equations with deep neural networks <https://arxiv.org/pdf/2205.06658.pdf>`_. *arXiv preprint arXiv:2205.06658*, 2022.
75
80
#. Y. Lu, G. Mei, & F. Piccialli. `A deep learning approach for predicting two-dimensional soil consolidation using physics-informed neural networks (PINN) <https://arxiv.org/pdf/2205.05710.pdf>`_. *arXiv preprint arXiv:2205.05710*, 2022.
76
81
#. J. Yu, L. Lu, X. Meng, & G. Karniadakis. `Gradient-enhanced physics-informed neural networks for forward and inverse PDE problems <https://doi.org/10.1016/j.cma.2022.114823>`_. *Computer Methods in Applied Mechanics and Engineering*, 393, 114823, 2022.
77
-
#. C. Garcia-Cervera, M. Kessler, & F. Periago. `A first step towards controllability of partial differential equations via physics-informed neural networks <https://www.researchgate.net/profile/Francisco-Periago/publication/359524458_A_first_step_towards_controllability_of_partial_differential_equations_via_physics-informed_neural_networks/links/6242e24c8068956f3c56d679/A-first-step-towards-controllability-of-partial-differential-equations-via-physics-informed-neural-networks.pdf>`_. 2022.
78
82
#. A. Sacchetti, B. Bachmann, K. Löffel, U. M. Künzi, & B. Paoli. `Neural networks to solve partial differential equations: A comparison with finite elements <https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9737092>`_. *IEEE Access*, 10, 32271-32279, 2022.
79
83
#. Y. Xue, Y. Li, K. Zhang, & F. Yang. `A physics-inspired neural network to solve partial differential equations - application in diffusion-induced stress <https://pubs.rsc.org/en/content/articlehtml/2022/cp/d1cp04893g>`_. *Physical Chemistry Chemical Physics*, 24(13), 7937-7949, 2022.
80
84
#. V. Santana, M. Gama, J. Loureiro, A. Rodrigues, A. Ribeiro, F. Tavares, A. Barreto Jr, I. Nogueira. `A first approach towards adsorption-oriented physics-informed neural networks: Monoclonal antibody adsorption performance on an ion-exchange column as a case study <https://www.mdpi.com/2305-7084/6/2/21>`_. *ChemEngineering*, 6.2 (2022): 21, 2022.
0 commit comments