Skip to content

Commit 71cbf79

Browse files
authored
Add paper (#1062)
1 parent a43079c commit 71cbf79

File tree

1 file changed

+1
-0
lines changed

1 file changed

+1
-0
lines changed

docs/user/research.rst

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -79,6 +79,7 @@ PINN
7979
#. A. Cornell, A. Ncube, & G. Harmsen. `Determining QNMs using PINNs <https://arxiv.org/pdf/2205.08284.pdf>`_. *arXiv preprint arXiv:2205.08284*, 2022.
8080
#. L. Guo, H. Wu, X. Yu, & T. Zhou. `Monte Carlo PINNs: Deep learning approach for forward and inverse problems involving high dimensional fractional partial differential equations <https://arxiv.org/pdf/2203.08501.pdf>`_. *arXiv preprint arXiv:2203.08501*, 2022.
8181
#. P. Escapil-Inchauspé, & G. A. Ruz. `Hyper-parameter tuning of physics-informed neural networks: Application to Helmholtz problems <https://arxiv.org/pdf/2205.06704.pdf>`_. *arXiv preprint arXiv:2205.06704*, 2022.
82+
#. P. Escapil-Inchauspé, & G. A. Ruz. `Physics-informed neural networks for operator equations with stochastic data <https://arxiv.org/abs/2211.10344>`_. *arXiv preprint arXiv:2211.10344*, 2022.
8283
#. H. Xie, C. Zhai, L. Liu, & H. Yong. `A weighted first-order formulation for solving anisotropic diffusion equations with deep neural networks <https://arxiv.org/pdf/2205.06658.pdf>`_. *arXiv preprint arXiv:2205.06658*, 2022.
8384
#. Y. Lu, G. Mei, & F. Piccialli. `A deep learning approach for predicting two-dimensional soil consolidation using physics-informed neural networks (PINN) <https://arxiv.org/pdf/2205.05710.pdf>`_. *arXiv preprint arXiv:2205.05710*, 2022.
8485
#. J. Yu, L. Lu, X. Meng, & G. Karniadakis. `Gradient-enhanced physics-informed neural networks for forward and inverse PDE problems <https://doi.org/10.1016/j.cma.2022.114823>`_. *Computer Methods in Applied Mechanics and Engineering*, 393, 114823, 2022.

0 commit comments

Comments
 (0)