Skip to content

Commit b258fb8

Browse files
committed
Update docs
1 parent 329d1f4 commit b258fb8

File tree

3 files changed

+3
-3
lines changed

3 files changed

+3
-3
lines changed

README.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -27,8 +27,8 @@ DeepXDE is a library for scientific machine learning and physics-informed learni
2727
- DeepONet extensions, e.g., POD-DeepONet [[Comput. Methods Appl. Mech. Eng.](https://doi.org/10.1016/j.cma.2022.114778)]
2828
- physics-informed DeepONet [[Sci. Adv.](https://doi.org/10.1126/sciadv.abi8605)]
2929
- MIONet: learning multiple-input operators [[arXiv](https://arxiv.org/abs/2202.06137)]
30+
- multifidelity DeepONet [[Phys. Rev. Research](https://doi.org/10.1103/PhysRevResearch.4.023210)]
3031
- DeepM&Mnet: solving multiphysics and multiscale problems [[J. Comput. Phys.](https://doi.org/10.1016/j.jcp.2021.110296), [J. Comput. Phys.](https://doi.org/10.1016/j.jcp.2021.110698)]
31-
- multifidelity DeepONet [[arXiv](https://arxiv.org/abs/2204.06684)]
3232
- multifidelity neural network (MFNN)
3333
- learning from multifidelity data [[J. Comput. Phys.](https://doi.org/10.1016/j.jcp.2019.109020), [PNAS](https://doi.org/10.1073/pnas.1922210117)]
3434

docs/index.rst

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -19,8 +19,8 @@ DeepXDE
1919
- DeepONet extensions, e.g., POD-DeepONet [`Comput. Methods Appl. Mech. Eng. <https://doi.org/10.1016/j.cma.2022.114778>`_]
2020
- physics-informed DeepONet [`Sci. Adv. <https://doi.org/10.1126/sciadv.abi8605>`_]
2121
- MIONet: learning multiple-input operators [`arXiv <https://arxiv.org/abs/2202.06137>`_]
22+
- multifidelity DeepONet [`Phys. Rev. Research <https://doi.org/10.1103/PhysRevResearch.4.023210>`_]
2223
- DeepM&Mnet: solving multiphysics and multiscale problems [`J. Comput. Phys. <https://doi.org/10.1016/j.jcp.2021.110296>`_, `J. Comput. Phys. <https://doi.org/10.1016/j.jcp.2021.110698>`_]
23-
- multifidelity DeepONet [`arXiv <https://arxiv.org/abs/2204.06684>`_]
2424
- multifidelity neural network (MFNN)
2525
- learning from multifidelity data [`J. Comput. Phys. <https://doi.org/10.1016/j.jcp.2019.109020>`_, `PNAS <https://doi.org/10.1073/pnas.1922210117>`_]
2626

docs/user/research.rst

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -46,7 +46,7 @@ PINN
4646
DeepONet
4747
--------
4848

49-
#. L. Lu, R. Pestourie, S. Johnson, & G. Romano. `Multifidelity deep neural operators for efficient learning of partial differential equations with application to fast inverse design of nanoscale heat transport <https://arxiv.org/abs/2204.06684>`_. *arXiv preprint arXiv:2204.06684*, 2022.
49+
#. L. Lu, R. Pestourie, S. Johnson, & G. Romano. `Multifidelity deep neural operators for efficient learning of partial differential equations with application to fast inverse design of nanoscale heat transport <https://doi.org/10.1103/PhysRevResearch.4.023210>`_. *Physical Review Research*, 4(2), 023210, 2022.
5050
#. L. Lu, X. Meng, S. Cai, Z. Mao, S. Goswami, Z. Zhang, & G. Karniadakis. `A comprehensive and fair comparison of two neural operators (with practical extensions) based on FAIR data <https://doi.org/10.1016/j.cma.2022.114778>`_. *Computer Methods in Applied Mechanics and Engineering*, 393, 114778, 2022.
5151
#. P. Jin, S. Meng, & L. Lu. `MIONet: Learning multiple-input operators via tensor product <https://arxiv.org/abs/2202.06137>`_. *arXiv preprint arXiv:2202.06137*, 2022.
5252
#. C. Lin, M. Maxey, Z. Li, & G. Karniadakis. `A seamless multiscale operator neural network for inferring bubble dynamics <https://doi.org/10.1017/jfm.2021.866>`_. *Journal of Fluid Mechanics*, 929, A18, 2021.

0 commit comments

Comments
 (0)