@@ -160,8 +160,8 @@ class DeepONet(NN):
160160 is a ``dict``, then the trunk net uses the rate `dropout_rate["trunk"]`,
161161 and the branch net uses `dropout_rate["branch"]`. Both `dropout_rate["trunk"]`
162162 and `dropout_rate["branch"]` should be ``float`` or lists of ``float``.
163- The list length should match the length of `layer_size_trunk ` - 1 for the
164- trunk net and `layer_size_branch ` - 2 for the branch net.
163+ The list length should match the length of `layer_sizes_trunk ` - 1 for the
164+ trunk net and `layer_sizes_branch ` - 2 for the branch net.
165165 trainable_branch: Boolean.
166166 trainable_trunk: Boolean or a list of booleans.
167167 num_outputs (integer): Number of outputs. In case of multiple outputs, i.e., `num_outputs` > 1,
@@ -210,7 +210,7 @@ def __init__(
210210 super ().__init__ ()
211211 if isinstance (trainable_trunk , (list , tuple )):
212212 if len (trainable_trunk ) != len (layer_sizes_trunk ) - 1 :
213- raise ValueError ("trainable_trunk does not match layer_size_trunk ." )
213+ raise ValueError ("trainable_trunk does not match layer_sizes_trunk ." )
214214
215215 self .layer_size_func = layer_sizes_branch
216216 self .layer_size_loc = layer_sizes_trunk
@@ -490,11 +490,11 @@ class DeepONetCartesianProd(NN):
490490 """Deep operator network for dataset in the format of Cartesian product.
491491
492492 Args:
493- layer_size_branch : A list of integers as the width of a fully connected network,
493+ layer_sizes_branch : A list of integers as the width of a fully connected network,
494494 or `(dim, f)` where `dim` is the input dimension and `f` is a network
495495 function. The width of the last layer in the branch and trunk net
496496 should be the same for all strategies except "split_branch" and "split_trunk".
497- layer_size_trunk (list): A list of integers as the width of a fully connected
497+ layer_sizes_trunk (list): A list of integers as the width of a fully connected
498498 network.
499499 activation: If `activation` is a ``string``, then the same activation is used in
500500 both trunk and branch nets. If `activation` is a ``dict``, then the trunk
@@ -505,8 +505,8 @@ class DeepONetCartesianProd(NN):
505505 is a ``dict``, then the trunk net uses the rate `dropout_rate["trunk"]`,
506506 and the branch net uses `dropout_rate["branch"]`. Both `dropout_rate["trunk"]`
507507 and `dropout_rate["branch"]` should be ``float`` or lists of ``float``.
508- The list length should match the length of `layer_size_trunk ` - 1 for the
509- trunk net and `layer_size_branch ` - 2 for the branch net.
508+ The list length should match the length of `layer_sizes_trunk ` - 1 for the
509+ trunk net and `layer_sizes_branch ` - 2 for the branch net.
510510 num_outputs (integer): Number of outputs. In case of multiple outputs, i.e., `num_outputs` > 1,
511511 `multi_output_strategy` below should be set.
512512 multi_output_strategy (str or None): ``None``, "independent", "split_both", "split_branch" or
@@ -537,8 +537,8 @@ class DeepONetCartesianProd(NN):
537537
538538 def __init__ (
539539 self ,
540- layer_size_branch ,
541- layer_size_trunk ,
540+ layer_sizes_branch ,
541+ layer_sizes_trunk ,
542542 activation ,
543543 kernel_initializer ,
544544 regularization = None ,
@@ -547,8 +547,8 @@ def __init__(
547547 multi_output_strategy = None ,
548548 ):
549549 super ().__init__ ()
550- self .layer_size_func = layer_size_branch
551- self .layer_size_loc = layer_size_trunk
550+ self .layer_size_func = layer_sizes_branch
551+ self .layer_size_loc = layer_sizes_trunk
552552 if isinstance (activation , dict ):
553553 self .activation_branch = activations .get (activation ["branch" ])
554554 self .activation_trunk = activations .get (activation ["trunk" ])
@@ -562,24 +562,24 @@ def __init__(
562562 else :
563563 self .dropout_rate_branch = self .dropout_rate_trunk = dropout_rate
564564 if isinstance (self .dropout_rate_branch , list ):
565- if not (len (layer_size_branch ) - 2 ) == len (self .dropout_rate_branch ):
565+ if not (len (layer_sizes_branch ) - 2 ) == len (self .dropout_rate_branch ):
566566 raise ValueError (
567567 "Number of dropout rates of branch net must be "
568- f"equal to { len (layer_size_branch ) - 2 } "
568+ f"equal to { len (layer_sizes_branch ) - 2 } "
569569 )
570570 else :
571571 self .dropout_rate_branch = [self .dropout_rate_branch ] * (
572- len (layer_size_branch ) - 2
572+ len (layer_sizes_branch ) - 2
573573 )
574574 if isinstance (self .dropout_rate_trunk , list ):
575- if not (len (layer_size_trunk ) - 1 ) == len (self .dropout_rate_trunk ):
575+ if not (len (layer_sizes_trunk ) - 1 ) == len (self .dropout_rate_trunk ):
576576 raise ValueError (
577577 "Number of dropout rates of trunk net must be "
578- f"equal to { len (layer_size_trunk ) - 1 } "
578+ f"equal to { len (layer_sizes_trunk ) - 1 } "
579579 )
580580 else :
581581 self .dropout_rate_trunk = [self .dropout_rate_trunk ] * (
582- len (layer_size_trunk ) - 1
582+ len (layer_sizes_trunk ) - 1
583583 )
584584 self ._inputs = None
585585
0 commit comments