Skip to content
Discussion options

You must be logged in to vote
  def first_derivative(x, y):
      return tf.stack([dde.grad.jacobian(y, x, j=0), dde.grad.jacobian(y, x, j=1) ], axis=1)[:,:,0]

    domain_pts = geom.random_points(test_points_num)
    prediction_error_domain = abs(model.predict(domain_pts, operator=pde))
    first_derivative_test = model.predict(data.test_x, operator=first_derivative)
    bcs_start = np.cumsum([0] + data.num_bcs)
    
    bcs_pts = []
    bc_errors = []
    for j, bc in enumerate(bcs):
        beg, end = bcs_start[j], bcs_start[j + 1]
        pts = data.test_x[beg:end]
        bcs_pts.extend(pts)
        bc_val = bc.func(pts, 0, len(pts), None).numpy()
        bc_val_predict = np.sum(first_derivative_test[beg:end] * n…

Replies: 2 comments

Comment options

You must be logged in to vote
0 replies
Comment options

You must be logged in to vote
0 replies
Answer selected by marijanarra
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Category
Q&A
Labels
None yet
2 participants