Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
85 changes: 47 additions & 38 deletions deepxde/nn/tensorflow_compat_v1/deeponet.py
Original file line number Diff line number Diff line change
Expand Up @@ -318,58 +318,67 @@ def build(self):
self.built = True

def build_branch_net(self):
y_func = self.X_func
if callable(self.layer_size_func[1]):
# User-defined network
y_func = self.layer_size_func[1](y_func)
elif self.stacked:
return self.layer_size_func[1](self.X_func)

if self.stacked:
# Stacked fully connected network
stack_size = self.layer_size_func[-1]
for i in range(1, len(self.layer_size_func) - 1):
y_func = self._stacked_dense(
y_func,
self.layer_size_func[i],
stack_size,
activation=self.activation_branch,
trainable=self.trainable_branch,
)
if self.dropout_rate_branch[i - 1] > 0:
y_func = tf.layers.dropout(
y_func,
rate=self.dropout_rate_branch[i - 1],
training=self.training,
)
return self._build_stacked_branch_net()

# Unstacked fully connected network
return self._build_unstacked_branch_net()

def _build_stacked_branch_net(self):
y_func = self.X_func
stack_size = self.layer_size_func[-1]

for i in range(1, len(self.layer_size_func) - 1):
y_func = self._stacked_dense(
y_func,
1,
stack_size,
use_bias=self.use_bias,
self.layer_size_func[i],
stack_size=stack_size,
activation=self.activation_branch,
trainable=self.trainable_branch,
)
else:
# Unstacked fully connected network
for i in range(1, len(self.layer_size_func) - 1):
y_func = self._dense(
if self.dropout_rate_branch[i - 1] > 0:
y_func = tf.layers.dropout(
y_func,
self.layer_size_func[i],
activation=self.activation_branch,
regularizer=self.regularizer,
trainable=self.trainable_branch,
rate=self.dropout_rate_branch[i - 1],
training=self.training,
)
if self.dropout_rate_branch[i - 1] > 0:
y_func = tf.layers.dropout(
y_func,
rate=self.dropout_rate_branch[i - 1],
training=self.training,
)
return self._stacked_dense(
y_func,
1,
stack_size=stack_size,
use_bias=self.use_bias,
trainable=self.trainable_branch,
)

def _build_unstacked_branch_net(self):
y_func = self.X_func

for i in range(1, len(self.layer_size_func) - 1):
y_func = self._dense(
y_func,
self.layer_size_func[-1],
use_bias=self.use_bias,
self.layer_size_func[i],
activation=self.activation_branch,
regularizer=self.regularizer,
trainable=self.trainable_branch,
)
return y_func
if self.dropout_rate_branch[i - 1] > 0:
y_func = tf.layers.dropout(
y_func,
rate=self.dropout_rate_branch[i - 1],
training=self.training,
)
return self._dense(
y_func,
self.layer_size_func[-1],
use_bias=self.use_bias,
regularizer=self.regularizer,
trainable=self.trainable_branch,
)

def build_trunk_net(self):
y_loc = self.X_loc
Expand Down
Loading