Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
46 changes: 34 additions & 12 deletions deepxde/nn/tensorflow_compat_v1/deeponet.py
Original file line number Diff line number Diff line change
Expand Up @@ -321,7 +321,7 @@ def build_branch_net(self):
if callable(self.layer_size_func[1]):
# User-defined network
return self.layer_size_func[1](self.X_func)

if self.stacked:
# Stacked fully connected network
return self._build_stacked_branch_net()
Expand Down Expand Up @@ -422,15 +422,18 @@ def _dense(
regularizer=None,
trainable=True,
):
return tf.layers.dense(
inputs,
dense = tf.keras.layers.Dense(
units,
activation=activation,
use_bias=use_bias,
kernel_initializer=self.kernel_initializer,
kernel_regularizer=regularizer,
trainable=trainable,
)
out = dense(inputs)
if regularizer:
self.regularization_loss += tf.math.add_n(dense.losses)
return out

def _stacked_dense(
self, inputs, units, stack_size, activation=None, use_bias=True, trainable=True
Expand Down Expand Up @@ -637,24 +640,22 @@ def build_branch_net(self):
else:
# Fully connected network
for i in range(1, len(self.layer_size_func) - 1):
y_func = tf.layers.dense(
y_func = self._dense(
y_func,
self.layer_size_func[i],
activation=self.activation_branch,
kernel_initializer=self.kernel_initializer,
kernel_regularizer=self.regularizer,
regularizer=self.regularizer,
)
if self.dropout_rate_branch[i - 1] > 0:
y_func = tf.layers.dropout(
y_func,
rate=self.dropout_rate_branch[i - 1],
training=self.training,
)
y_func = tf.layers.dense(
y_func = self._dense(
y_func,
self.layer_size_func[-1],
kernel_initializer=self.kernel_initializer,
kernel_regularizer=self.regularizer,
regularizer=self.regularizer,
)
return y_func

Expand All @@ -664,12 +665,11 @@ def build_trunk_net(self):
if self._input_transform is not None:
y_loc = self._input_transform(y_loc)
for i in range(1, len(self.layer_size_loc)):
y_loc = tf.layers.dense(
y_loc = self._dense(
y_loc,
self.layer_size_loc[i],
activation=self.activation_trunk,
kernel_initializer=self.kernel_initializer,
kernel_regularizer=self.regularizer,
regularizer=self.regularizer,
)
if self.dropout_rate_trunk[i - 1] > 0:
y_loc = tf.layers.dropout(
Expand All @@ -687,3 +687,25 @@ def merge_branch_trunk(self, branch, trunk):
@staticmethod
def concatenate_outputs(ys):
return tf.stack(ys, axis=2)

def _dense(
self,
inputs,
units,
activation=None,
use_bias=True,
regularizer=None,
trainable=True,
):
dense = tf.keras.layers.Dense(
units,
activation=activation,
use_bias=use_bias,
kernel_initializer=self.kernel_initializer,
kernel_regularizer=regularizer,
trainable=trainable,
)
out = dense(inputs)
if regularizer:
self.regularization_loss += tf.math.add_n(dense.losses)
return out
Loading