-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathmain.py
227 lines (204 loc) · 6.71 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
import os
import time
import argparse
import numpy as np
import seaborn as sns
import torch
import torch.nn as nn
import matplotlib.pyplot as plt
from skorch import NeuralNetClassifier
from scipy.ndimage.filters import gaussian_filter1d
from load_data import LoadData
from cnn_model import ConvNN
from active_learning import select_acq_function, active_learning_procedure
def load_CNN_model(args, device):
"""Load new model each time for different acqusition function
each experiments"""
model = ConvNN().to(device)
cnn_classifier = NeuralNetClassifier(
module=model,
lr=args.lr,
batch_size=args.batch_size,
max_epochs=args.epochs,
criterion=nn.CrossEntropyLoss,
optimizer=torch.optim.Adam,
train_split=None,
verbose=0,
device=device,
)
return cnn_classifier
def save_as_npy(data: np.ndarray, folder: str, name: str):
"""Save result as npy file
Attributes:
data: np array to be saved as npy file,
folder: result folder name,
name: npy filename
"""
file_name = os.path.join(folder, name + ".npy")
np.save(file_name, data)
print(f"Saved: {file_name}")
def plot_results(data: dict):
"""Plot results histogram using matplotlib"""
sns.set()
for key in data.keys():
# data[key] = gaussian_filter1d(data[key], sigma=0.9) # for smoother graph
plt.plot(data[key], label=key)
plt.show()
def print_elapsed_time(start_time: float, exp: int, acq_func: str):
"""Print elapsed time for each experiment of acquiring
Attributes:
start_time: Starting time (in time.time()),
exp: Experiment iteration
acq_func: Name of acquisition function
"""
elp = time.time() - start_time
print(
f"********** Experiment {exp} ({acq_func}): {int(elp//3600)}:{int(elp%3600//60)}:{int(elp%60)} **********"
)
def train_active_learning(args, device, datasets: dict) -> dict:
"""Start training process
Attributes:
args: Argparse input,
estimator: Loaded model, e.g. CNN classifier,
device: Cpu or gpu,
datasets: Dataset dict that consists of all datasets,
"""
acq_functions = select_acq_function(args.acq_func)
results = dict()
if args.determ:
state_loop = [True, False] # dropout VS non-dropout
else:
state_loop = [True] # run dropout only
for state in state_loop:
for i, acq_func in enumerate(acq_functions):
avg_hist = []
test_scores = []
acq_func_name = str(acq_func).split(" ")[1] + "-MC_dropout=" + str(state)
print(f"\n---------- Start {acq_func_name} training! ----------")
for e in range(args.experiments):
start_time = time.time()
estimator = load_CNN_model(args, device)
print(
f"********** Experiment Iterations: {e+1}/{args.experiments} **********"
)
training_hist, test_score = active_learning_procedure(
query_strategy=acq_func,
X_val=datasets["X_val"],
y_val=datasets["y_val"],
X_test=datasets["X_test"],
y_test=datasets["y_test"],
X_pool=datasets["X_pool"],
y_pool=datasets["y_pool"],
X_init=datasets["X_init"],
y_init=datasets["y_init"],
estimator=estimator,
T=args.dropout_iter,
n_query=args.query,
training=state,
)
avg_hist.append(training_hist)
test_scores.append(test_score)
print_elapsed_time(start_time, e + 1, acq_func_name)
avg_hist = np.average(np.array(avg_hist), axis=0)
avg_test = sum(test_scores) / len(test_scores)
print(f"Average Test score for {acq_func_name}: {avg_test}")
results[acq_func_name] = avg_hist
save_as_npy(data=avg_hist, folder=args.result_dir, name=acq_func_name)
print("--------------- Done Training! ---------------")
return results
def main():
parser = argparse.ArgumentParser()
parser.add_argument(
"--batch_size",
type=int,
default=128,
metavar="N",
help="input batch size for training (default: 128)",
)
parser.add_argument(
"--epochs",
type=int,
default=50,
metavar="EP",
help="number of epochs to train (default: 50)",
)
parser.add_argument(
"--lr",
type=float,
default=1e-3,
metavar="LR",
help="learning rate (default: 1e-3)",
)
parser.add_argument(
"--seed", type=int, default=369, metavar="S", help="random seed (default: 369)"
)
parser.add_argument(
"--experiments",
type=int,
default=3,
metavar="E",
help="number of experiments (default: 3)",
)
parser.add_argument(
"--dropout_iter",
type=int,
default=100,
metavar="T",
help="dropout iterations,T (default: 100)",
)
parser.add_argument(
"--query",
type=int,
default=10,
metavar="Q",
help="number of query (default: 10)",
)
parser.add_argument(
"--acq_func",
type=int,
default=0,
metavar="AF",
help="acqusition functions: 0-all, 1-uniform, 2-max_entropy, \
3-bald, 4-var_ratios, 5-mean_std (default: 0)",
)
parser.add_argument(
"--val_size",
type=int,
default=100,
metavar="V",
help="validation set size (default: 100)",
)
parser.add_argument(
"--determ",
action="store_true",
help="Compare with deterministic models (default: False)",
)
parser.add_argument(
"--result_dir",
type=str,
default="result_npy",
metavar="SD",
help="Save npy file in this folder (default: result_npy)",
)
args = parser.parse_args()
torch.manual_seed(args.seed)
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")
datasets = dict()
DataLoader = LoadData(args.val_size)
(
datasets["X_init"],
datasets["y_init"],
datasets["X_val"],
datasets["y_val"],
datasets["X_pool"],
datasets["y_pool"],
datasets["X_test"],
datasets["y_test"],
) = DataLoader.load_all()
if not os.path.exists(args.result_dir):
os.mkdir(args.result_dir)
results = train_active_learning(args, device, datasets)
plot_results(data=results)
if __name__ == "__main__":
main()